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Abstract
For any collection of finite structures closed under isomorphism (i.e., an age) which has the Hereditary
Property (HP), the Joint Embedding Property (JEP), and the Cofinal Amalgamation Property
(CAP), there is a unique (up to isomorphism) countable structure which is cofinally ultrahomogeneous
with the given age. Such a structure is called the cofinal Fraïssé limit of the age.

In this paper, we consider the computational strength needed to construct the cofinal Fraïssé
limit of a computable age. We show that this construction can always be done using the oracle 0(3),
and that there are ages that require 0′′.

In contrast, we show that if one assumes the strengthening of (CAP) known as the Amalgamation
Property (AP), then the resulting limit, called the Fraïssé limit, can be constructed from the age
using 0′. Our results therefore show that the more general case of cofinal Fraïssé limits requires
greater computational strength than Fraïssé limits.
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1 Introduction

Given a collection of finite structures an important question is “when can these structures
be glued together to get a canonical infinite limit?”. In the case where the canonical limit is
a structure containing all finite structures and that has the “maximum amount of symmetry”
(namely, is ultrahomogeneous), this question was answered by Fraïssé. Specifically, Fraïssé
showed that such a limit, called a Fraïssé limit, exists if and only if the collection of structures
has the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

Fraïssé limits have been played a fundamental role in computer science and mathematics,
including in database theory, automata theory, model theory, and ergodic theory. Further,
there is often a tight connection between properties of the Fraïssé limit (such as having
trivial definable closure, ℵ0-categoricity, or having an amenable automorphism group) and
corresponding properties of the collection of finite structures used to build it (respectively,
having the Strong Amalgamation Property, having only finitely many elements (up to
isomorphism) of each size, or having the Ramsey property).

Given the important connection between a class of finite structures and its Fraïssé limit,
it is worth studying how computably one can construct the Fraïssé limit from the collection
of structures. This computability question was first studied by Csima, Harizanov, Miller, and
Montalbán, who showed in [13] how to computably build a Fraïssé limit from a computable
collection of finite structures along with computable witnesses to the Hereditary Property,
the Joint Embedding Property, and the Amalgamation Property.

Of these three properties needed to build a Fraïssé limit from a collection of finite
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structures, the Amalgamation Property is the most closely related to the symmetry of the
limit. However, often the Amalgamation Property is too restrictive and we instead only
have the weaker version of this property called the Cofinal Amalgamation Property. The
following example shows one of the ways in which the Cofinal Amalgamation Property is not
as restrictive as the Amalgamation Property (see Definitions 4.24 and 4.29).

▶ Example 1.1. Let Lf = {f} be the language with a single unary function symbol and
let Kf be the collection of finite Lf -structures M such that M |= (∀x)

(
f(x) ̸= x

)
and

M |= (∀x)
(
f(f(x)) = x

)
∨

(
f(f(f(x))) = x

)
. Note that Kf is a Fraïssé class.

Let LR = {R} be the language with a single binary relation symbol and let KR be
the collection of LR-structures M where RM is the graph of a function r such that M |=
(∀x)

(
r(x) ̸= x

)
and M |= (∀x)

(
r(r(x)) = x

)
∨

(
r(r(r(x))) = x

)
. Note that KR does not

have the Amalgamation Property. To see this, suppose M2 is the unique element of KR with
underlying set {x, y} and M3 is the unique element of KR with underlying set {x, y, z} and
rM3(x) = y and rM3(y) = z. If N were the result of amalgamating M2 and M3 over {x}
then we would have rN (rN (x)) = x and rN (rN (rN (x))) = x, implying rN (x) = x. However,
KR does have the Cofinal Amalgamation Property, as it has amalgamation over all subsets
that are closed under r.

When studying structures with functions, one often does not care if the function is
represented via a function symbol or via a relation symbol encoding the graph of the function.
As this example shows, the Cofinal Amalgamation Property, unlike the the Amalgamation
Property, is not sensitive to the specific way that functions are represented in a structure,
and is therefore worth studying as well.

Classes of structures with the Cofinal Amalgamation Property also admit limit objects
(called cofinal Fraïssé limits), but such limit objects only satisfy the weaker notion of cofinal
ultrahomogeneity. In this paper, we expand on the work in [13] and study how computationally
difficult it is to construct a cofinal Fraïssé limit from a collection of finite structures satisfying
the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

1.1 Related Work
Fraïssé limits [21], the Amalgamation Property (AP), and ultrahomogeneity are key concepts
in classical model theory [22, Chapter 7], which describe an important way in which certain
countable structures can be built as a generic limit of an appropriate collection of finite
structures [10]. In recent years, deep connections between Fraïssé limits and ergodic theory
have also been discovered [2, 23].

Fraïssé limits and their computability have been considered in the context of verification of
database systems [7], and researchers have investigated which Fraïssé limits can be described
by automata [25]. Within computer science, Fraïssé limits have also been studied in the
the context of denotational semantics for programming languages [16, 17], fuzzy logic [4],
and the complexity of constraint satisfaction problems in AI [12] and in phylogenetics and
computational linguistics [6].

In this paper, we primarily study the weaker notions of cofinal Fraïssé limits, the Cofinal
Amalgamation Property (CAP), and cofinal ultrahomogeneity. Cofinal ultrahomogeneity
was introduced by Calais [8, 9] (under the name “pseudo-homogeneity”) along with the
corresponding amalgamation property and limit objects, and was rediscovered by Truss [34]
in the context of generic automorphisms. For more on the history of these notions and
their relationship to other notions of limit, amalgamation, and ultrahomogeneity, see [27]
and [26]. These other notions include the even weaker notions of weak Fraïssé limits, the
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Weak Amalgamation Property (WAP), and weak ultrahomogeneity, which do generalize
the cofinal concepts, but do not yet include many more known examples. For a study
of the computability of the connections between weak Fraïssé limits, (WAP), and weak
ultrahomogeneity, see [3], which generalizes the results of the current paper (often requiring
substantially more complicated proofs).

For more on the Cofinal Amalgamation Property including several examples, see [28]
and [29, Section 3.1]; for a categorical presentation, see [30]. The Cofinal Amalgamation
Property has been used in the study of topological dynamics [24] and the Ramsey property
[5, 14], and has also been studied in [31], [32], and [18].

The computability of the Fraïssé construction was first studied in [13], and we build on
several of their results. Isomorphisms between computable Fraïssé limits were also studied in
[20] and [19], and a related computability notion was considered in [1, 11]. For more on the
computability of certain specific Fraïssé limits, see [33].

2 Summary of Main Results

Given an age, i.e., a collection of finite structures closed under isomorphisms, one is often
interested in a countable structure which can be thought of as the limit of the age, i.e., a
countable structure whose age is the given one, and where the countable structure is generic
in some sense.

In this paper, we will be interested in the computable content of going from an age to
its corresponding limit. It turns out that our results on the computable content of these
constructions will primarily be in terms of the embedding information of the age. The
embedding information of a computable age K, which we denote EI(K), describes when a
map between two elements of K can be extended to an embedding. We observe in Lemma 4.5
that EI(K) is always computable from the Turing jump of K, and is computable in the case
where the language of K is finite and relational.

The most common instance of the phenomenon of an age having a limit is that of
the Fraïssé limit. Given an age (with countably many isomorphism classes) satisfying the
Hereditary Property (HP), the Joint Embedding Property (JEP), and the Amalgamation
Property (AP), there is a unique structure, called the Fraïssé limit, whose age is the given
one and which is ultrahomogeneous. In [13] it was shown how to construct a Fraïssé limit
from computable witnesses for (HP), (JEP), and (AP). In Lemma 4.17, Proposition 4.20,
and Proposition 4.25 we show that such witnesses are always computable from the embedding
information. Putting this together, we obtain the following result.

▶ Corollary (Corollary 5.5). Suppose K is a computable age with (HP), (JEP), and (AP).
Then K has an EI(K)-computable Fraïssé limit.

While Fraïssé limits are the most common type of limit of an age, often we have ages
which satisfy (HP) and (JEP), but which do not satisfy (AP), and instead merely satisfy
the weaker notion of the Cofinal Amalgamation Property (CAP). In this case the age
still has a type of limit, called the cofinal Fraïssé limit, but the limiting object no longer
need be ultrahomogeneous and is merely required to satisfy the weaker notion of cofinal
ultrahomogeneity.

As with the case of Fraïssé limits, we show that from computable witnesses for (HP),
(JEP), and (CAP), we can construct the cofinal Fraïssé limit. We frame this result in terms
of (relativized) computable versions of the corresponding properties. (For example, (s-cHP)
denotes the s-computable version of (HP).)
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▶ Theorem (Theorem 5.19). Let s be a Turing degree. Suppose
(a) K is an s-computable age,
(b) EI(K) ≤T s, and
(c) K has (s-cHP), (s-cJEP), and (s-cCAP).

Then there is an s-computable cofinal Fraïssé limit of K.

With this result in hand, we reduce the problem of computing the cofinal Fraïssé limit
from an age to the problem of computing witnesses to (CAP) from an age (as we have already
shown that witnesses to (HP) and (JEP) are computable from the embedding information).
We are able to show the following upper bounds on the computability of (CAP) and of cofinal
Fraïssé limits.

▶ Theorem (Theorem 4.36 (b)). If K is a computable age with (CAP), then it has (EI(K)′′-cCAP).

▶ Corollary (Corollary 5.20). Suppose K is a computable age with (HP), (JEP), and (CAP).
Then K has an EI(K)′′-computable cofinal Fraïssé limit.

We then turn our attention to the question of lower bounds for the computability of
(CAP). We consider two situations, one where the language is finite and relational (and
hence the embedding information is computable), and one where we allow the language
to be infinite and to have function symbols. We obtain the following lower bound on the
computability of (CAP) for finite relational languages.

▶ Theorem (Theorem 6.1). There is a computable age K, which is the canonical computable
age of some structure in a finite relational language, such that K has (CAP) but if it has
(s-cCAP) for some Turing degree s, then 0′′ ≤T s.

We also obtain the corresponding lower bound on the computability of cofinal Fraïssé
limits for finite relational languages.

▶ Corollary (Corollary 6.2). There is a computable age K, which is the canonical computable
age of some structure in a finite relational language, such that if s is a Turing degree and M
is an s-computable structure that is s-computably cofinally ultrahomogeneous and a cofinal
Fraïssé limit of K, then 0′ ≤T s.

Finally, in the general case, we obtain lower bounds on the computability of (CAP) and
of cofinal Fraïssé limits.

▶ Theorem (Theorem 6.3). There is a computable age K, which is the canonical computable
age of some structure, such that K has (CAP) but if it has (s-cCAP) for some Turing degree
s, then 0′′ ≤T s.

▶ Corollary (Corollary 6.4). There is a computable age K, which is the canonical computable
age of some structure, such that if s is a Turing degree and M is an s-computable structure
that is s-computably cofinally ultrahomogeneous and a cofinal Fraïssé limit of K, then 0′′ ≤T s.

3 Basic Model Theory and Notation

Throughout this paper L will be a (not necessarily relational) language. All relation symbols
will have positive arity, but we will allow function symbols to have arity 0 (and we will treat
0-ary function symbols as constant symbols). If A and B are L-structures, we write A ⊆ B
to denote the fact that A is a substructure of B. For a finite sequence a and a set A, we
write a ⊆ A to mean that each element of a is in A. When A is the underlying set of a
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structure A we will use the standard model theory notation of writing a ∈ A for a ⊆ A. We
use the term substructure in the standard model-theoretic sense, i.e., to mean an induced
substructure that preserves whether or not each relation holds.

By an L-tuple we will mean a pair (a,A) where A is an L-structure and a ∈ A. We will
often abuse notation and refer to an L-tuple (a,A) by a when the background structure A
is clear. If P is a property of sequences we say that P holds of an L-tuple (a,A) when it
holds of a. (For example, the length of (a,A) is the length of a.)

If M is a structure and A is a finite subset of M, we define clM(A) to be the smallest
substructure of M that contains A (i.e., the closure of A under all L-terms). Suppose (a,M)
and (b,N ) are L-tuples of the same length; we say (a,M) ∼ (b,N ) if for every atomic
formula ψ in the empty language, M |= ψ(a) if and only if N |= ψ(b). This is equivalent
to saying that whenever two coordinates of a are equal (or not equal) the corresponding
coordinates of b are equal (or not equal, respectively).

We say (a,M) ≃ (b,N ) if for every atomic formula φ, we have M |= φ(a) if and only if
N |= φ(b). Note that this is equivalent to the statement that the map taking the tuple a to
b can be extended to an isomorphism between clM(a) and clN (b). In this context we refer
to this isomorphism by tcl(a,b).

Note that if a ∈ M0 with M0 a substructure of M and b ∈ N0 with N0 a substructure
of N , then (a,M0) ≃ (b,N0) if and only if (a,M) ≃ (b,N ). We will therefore often refer
to this relationship simply as a ≃ b (and similarly for a ∼ b).

We say a collection of L-structures K is uniformly finite if L is a finite language and
there is a computable function f : ω → ω such that for all M ∈ K and a ∈ M, we have
|clM(a)| ≤ f(|a|). We say that M is uniformly finite if {M} is uniformly finite.

We write 0′ for the Turing jump of the minimal Turing degree, 0. We write a ≤T b to
denote that the Turing degree a is Turing reducible to the Turing degree b. Fix a standard
enumeration of Turing machines and let {e}(n) be the result of running the eth Turing
machine on input n ∈ ω. We write {e}(n)↓ when this computation halts, and {e}(n)↑ when
it does not halt.

If σ is a sequence and a is an element, we write σ∧a to be the sequence obtained by
appending a to the end of σ. If σ and τ are sequences, a map f : σ → τ is a function which
takes as input a pair (a, i) where a = σ(i), and returns as output a pair (b, j) where b = τ(j).

If f is a function which outputs k-sequences we write f(x) = (f0(x), . . . , fk−1(x)), so
that each fi is a function that outputs the ith element of the tuple on a given input. For an
arbitrary function f : X → Y and a subset X0 ⊆ Y , we let f“(X0) denote the image of X0
under f , i.e., {f(x) : x ∈ X0}. We will often work with sequences of tuples, and will write,
e.g., (ai, bi)i∈ω to mean the sequence of pairs

(
(ai, bi)

)
i∈ω

.
Throughout this paper, we use standard notation from computable model theory for

computable representations of structures; for details, see Appendix A.

4 Computable Ages

4.1 Basic Definitions of Computable Ages
We now introduce the notion of a computable age.

▶ Definition 4.1. An age for L is a collection of finitely generated structures closed under
isomorphism.

If L is a language with a computable representation, a computable representation of
an age K is a computable sequence K = (a,A, i)i∈ω where
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for each (a,A, i) ∈ K, we have that (I) (a,A) is an L-tuple such that A = clA(a);
(II) A is a computable L-structure (with respect to the computable representation of
L); and (III) A ∈ K; and
for every B ∈ K there is an (a,A, i) ∈ K such that B ∼= A.

We will refer to a computable representation of an age as a computable age. We will
omit mention of K when it is clear from context.

If K is a computable age and i ∈ ω, we write (aK:i,AK:i) to denote the unique L-tuple
such that (aK:i,AK:i, i) ∈ K, and define IK(i) = (aK:i,AK:i, i). We omit the subscript K from
IK when it is clear from context. We will abuse notation and write A ∈ K if A = AK:i for
some i ∈ ω. Similarly we write (a,A) ∈ K if (a,A) = (aK:i,AK:i) for some i ∈ ω.

▶ Definition 4.2. A potential embedding in K is a triple of the form (I(i), I(j), c) where
i, j ∈ ω and c ∈ AK:j. We write EI(i):c:I(j) = (I(i), I(j), c). Define the domain of EI(i):c:I(j)
to be dom(EI(i):c:I(j)) = I(i), the codomain to be codom(EI(i):c:I(j)) = I(j) and the range
of EI(i):c:I(j) to be range(EI(i):c:I(j)) = c. In diagrams we will write A c

99KK B to signify that
(A,B, c) is a potential embedding in K.

A potential embedding (I(i), I(j), c) in K is an embedding if ai ≃ c. We will write
A c−→K B to signify that (A,B, c) is an embedding in K.

Note that the collection of potential embeddings is a computable set. However, the
collection of embedding is, in general, only co-c.e. For this reason it will be important to use
potential embeddings when building a cofinally homogeneous structure from its age.

▶ Definition 4.3. Let F and G be potential embeddings in K and suppose codom(F ) =
dom(G). When G is not an embedding, we define G ◦ F =

(
dom(F ), codom(G), range(G)

)
.

When G is an embedding, we define G◦F =
(
dom(F ), codom(G), tcl(aj , range(G))(range(F )

)
,

where j ∈ ω is such that I(j) = dom(G). We write idI(i) to denote the triple (I(i), I(i),ai).

One can check that this notation gives rise to a category Cat(K) whose objects are
elements of K, and where the maps between A and B are those potential embeddings F with
dom(F ) = A and codom(F ) = B.

The following defines an important set associated to any pair of computable ages, as it
will let us tell when potential embeddings between substructures of the two ages are in fact
embeddings.

▶ Definition 4.4. Suppose K is a computable age. Define the embedding information
related to K, denoted EI(K), to be the collection of tuples (IK(k0),b0, IK(k1),b1) such that
b0 ∈ AK:k0 and b1 ∈ AK:k1 , and b0 ≃ b1.

We will see that, given two computable cofinally homogeneous structures that are
isomorphic, one can always extend any partial isomorphism (between appropriate elements
of the age) to an isomorphism. However, in order to build a computable such isomorphism,
we will need to be able to computably extend various partial isomorphisms; we will use the
embedding information to do so.

▶ Lemma 4.5. If K is a computable age, then EI(K) ≤T 0′. Further, if K is a uniformly
finite computable age, then EI(K) is computable.

Proof. The atomic diagram of the closure of a tuple is c.e., and therefore it is c.e. to determine
when a map does not extend to a partial embedding, establishing the first claim. The second
claim is immediate from the definition. ◀
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▶ Definition 4.6. Let K0 and K1 be computable ages, and let s be a Turing degree. Define
an isomorphism from K0 to K1 to be a pair of maps ααα = (α0, α1) such that

α0 : K0 → K1 and α1 : K1 → K0,
for all (a,A, i) ∈ K0 with α0(a,A, i) = (b,B, j) we have a ≃ b, and
for all (b,B, j) ∈ K1 with α1(b,B, j) = (a,A, i) we have a ≃ b.

The pair ααα is s-computable when the maps α∗
0 : ω → ω and α∗

1 : ω → ω that satisfy
α0(IK0(i)) = IK1(α∗

0(i)) for i ∈ ω and
α1(IK1(i)) = IK0(α∗

1(i)) for i ∈ ω

are s-computable.
We say that K0 and K1 are s-computably isomorphic when there is some s-computable

isomorphism between them. When s = 000 we say that they are computably isomorphic.
Define ααα−1 = (α1, α0). Note that ααα−1 is an isomorphism from K1 to K0.

Note that two computable ages K0 and K1 are isomorphic if and only if they are both
computable representations of the same age, which holds if and only if for some Turing degree
s they are s-isomorphic.

▶ Remark 4.7. When i and j are clear from context we will abuse notation and write α0(A)
or α0(a,A) to mean α0(a,A, i), and α1(B) or α1(b,B) to mean α1(b,B, j). Likewise, for
d ∈ A and (a,A, i) ∈ K0 we will write α0(d,a) to mean the pair

(
tcl(a, α0(a))(d), α0(a)

)
,

and for d ∈ B and (b,B, j) ∈ K1 we will write α1(d,b) to mean
(
tcl(a, α1(b))(d), α1(b)

)
.

We now define how to apply an isomorphism to a potential embedding.

▶ Definition 4.8. Let K0 and K1 be computable ages and let ααα = (α0, α1) be an isomorphism
from K0 to K1. Suppose EI(i):c:I(j) is a potential embedding in K0. Define the application of
ααα to EI(i):c:I(j) by ααα(EI(i):c:I(j)) =

(
α0(I(i)), α0(I(j)), tcl(aj , α0(aj))(c)

)
.

▶ Lemma 4.9. Suppose ααα = (α0, α1) is an isomorphism between computable ages K0 and K1.
Then ααα extends to an equivalence of categories between Cat(K0) and Cat(K1) with inverse
equivalence ααα−1.

Proof. If EI(i):c:I(j) is a potential embedding, then ααα(EI(i):c:I(j)) is also a potential embedding.
Further EI(i):c:I(j) is an embedding if and only if ααα(EI(i):c:I(j)) is. ◀

Given a computable structure, the collection of its finitely generated substructures,
appropriately enumerated, forms a computable age.

▶ Definition 4.10. Let M be an L-structure. The age of M is the collection of all
L-structures isomorphic to a finitely generated substructure of M.

Suppose M is computable, and let (ai)i∈ω be some computable enumeration of all
finite tuples in M in which every tuple appears infinitely often. We say that the sequence
(ai, clM(ai), i)i∈ω is a canonical computable age of M. Let K[M] be one such canonical
computable age. A computable age K is computably the age of M if it is computably
isomorphic to K[M].

The following basic facts are immediate from the definition.

▶ Lemma 4.11. Let M be a computable L-structure.

Any two canonical computable ages of M are computably isomorphic.
The canonical computable age of M is computably the age of M.
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If K is the age of M, and K is computably the age of M, then K is a computable
representation of K.

Note that the paper [13] refers to the canonical computable age of M as “the canonical
representation of the age of M”, and speaks of “a canonical representation of the age of M”
to mean any computable representation that is computably isomorphic to the canonical one.

▶ Lemma 4.12. For each i ∈ {0, 1}, let Mi be a computable structure and suppose that Ki

is computably the age of Mi. If M0 and M1 are s-computably isomorphic, then K0 and K1
are s-computably isomorphic as well.

Proof. Suppose f : M0 → M1 is an s-computable isomorphism between M0 and M1.
It suffices to show that K[M0] is s-computably isomorphic to K[M1]. Let α0 : K[M0] →
K[M1] be the map where α0(a,A, i) = (f(a), clM1(f(a)), j), where j is the first index
such that (f(a), clM1(f(a)), j) ∈ K[M1]. Similarly, let α1 : K[M1] → K[M0] be the
map defined by α1(a,A, i) = (f−1(a), clM0(f−1(a)), j), where j is the first index such
that (f−1(a), clM0(f−1(a)), j) ∈ K[M0]. Clearly (α0, α1) is the desired isomorphism of
computable ages. ◀

The next definition will be important for constructing an infinite structure given an age.

▶ Definition 4.13. If M is a computable structure we write EI(M) to mean EI(K[M]).

The following result will allow us to convert a computable sequence of compatible
embeddings into a structure. Its proof is immediate from well-known results (see, e.g., [13,
Lemma 2.9]). For completeness, we include a proof in Appendix B.

▶ Proposition 4.14. Let K be a computable age and suppose (Fi)i∈ω is a computable
sequence of embeddings where for each i ∈ ω there is a ki ∈ ω such that dom(Fi) = IK(ki)
and codom(Fi) = IK(ki+1).

Then there is a computable age K∗ which is computably isomorphic to K, and a computable
sequence (IK(ℓi))i∈ω such that for i ∈ ω, we have aK∗:ℓi

≃ aK:ki
and AK∗:ℓi

⊆ AK∗:ℓi+1 , and

tcl(aK:ki+1 ,aK∗:ℓi+1) ◦ tcl(aki
, range(Fi)) = tcl(aki

,aK∗:ℓi
).

▶ Corollary 4.15. Let K be a computable age and suppose (Fi)i∈ω are as in Proposition 4.14.
Then there is a structure Dω along with embeddings Gi : AK:ki

→ Dω (for i ∈ ω) such that
for any i < j, we have Gi = Gj ◦ Fj−1 ◦ Fj−2 ◦ · · · ◦ Fi. Further, both Dω and (Gn)n∈ω are
computable.

Proof. Apply Proposition 4.14, and let Dω =
⋃

n∈ω AK∗:ℓn . Then the following diagram
commutes, where Gi is tcl(aki

,aK∗:ℓi
) for i ∈ ω.

AK:k0 AK:k1 . . .

AK∗:ℓ0 AK∗:ℓ1 . . .

F0

G0 G1

F1

⊆ ⊆

Observe that Dω is the union of a computable sequence of computable structures, hence is
computable. ◀
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4.2 Properties of Computable Ages
We now define computable analogues of various properties of ages.

▶ Definition 4.16. An age K has the hereditary property, written (HP), if for all B ∈ K,
we have A ⊆ B implies A ∈ K.

Suppose that s is a Turing degree. We say a computable age K has the s-computable
hereditary property, written (s-cHP), if there is an s-computable function that takes a
pair (I(i),b) where b ∈ Ai and returns some I(j) such that aj ≃ b. When s is 0, we speak
of the computable hereditary property, and write (cHP).

We have the following bound.

▶ Lemma 4.17. Suppose K is a computable age with (HP). Then K has (EI(K)-cHP).

Proof. Given (I(i),b) with b ∈ (Ai, ai), use EI(K) to search for I(j) such that aj ≃ b. ◀

Not every computable age with (HP) has (cHP), but every computable age with (HP) is
isomorphic to one with (cHP), as shown in [13]; we include a proof for completeness.

▶ Proposition 4.18 ([13, Theorem 2.8]). Suppose K is a computable age with (HP). Then
there is a computable age K∗ with (cHP) that is isomorphic to K.

Proof. We obtain K∗ from K by enumerating all the structures generated by finite tuples in
structures in K. Because K has (HP), it is clear that K and K∗ represent the same age and
hence are isomorphic. ◀

▶ Definition 4.19. An age K has the joint embedding property, written (JEP), if for
all A,B ∈ K there is a C ∈ K for which there are embeddings αA : A → C and αB : B → C.

Suppose s is a Turing degree. We say a computable age K has the s-computable
joint embedding property, written (s-cJEP), if there is an s-computable function f

with domain K × K such that for all I(ℓ0), I(ℓ1) ∈ K, we have f(I(ℓ0), I(ℓ1)) = (F0, F1)
where (i) F0 and F1 are embeddings; (ii) dom(F0) = I(ℓ0) and dom(F0) = I(ℓ1); and (iii)
codom(F0) = codom(F1). When s is 0, we speak of the computable joint embedding
property, and write (cJEP).

▶ Proposition 4.20. Suppose K is a computable age with (JEP). Then K also has (EI(K)-cJEP).

Proof. Given I(i) and I(j), search through structures Ak ∈ K and finite tuples in Ak until
one finds an ℓ and tuples bi,bj ∈ Aℓ such that bi ≃ ai and bj ≃ aj . ◀

The following two results are due to [13].

▶ Proposition 4.21 ([13, Lemma 2.6]). If M is a computable structure then K[M] has (cHP)
and (cJEP).

▶ Proposition 4.22 ([13, Theorem 2.10]). If K is a computable age with (cHP) and (cJEP),
then it is canonically the age of some computable structure.

Next we introduce some technical notions which will be important in the definitions
of amalgamation properties. Key among these is a span, which serves as the “base” of an
amalgamation diagram.
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▶ Definition 4.23. A potential span in a computable age K is a pair (F0, F1) of potential
embeddings with dom(F0) = dom(F1). We say that a potential span (F0, F1) is over dom(F0).
A potential span is a span if in addition, F0 and F1 are both embeddings.

An amalgamation diagram over a potential span (F0, F1) is a tuple (G0, G1) such that
G0 is an embedding and G1 is a potential embedding,
dom(Gi) = codom(Fi) for i ∈ {0, 1},
codom(G0) = codom(G1), and
if (F0, F1) is a span then G1 is an embedding and G0 ◦ F0 = G1 ◦ F1.

When (F0, F1) is a span, the follow diagram must commute.

I(i1) I(k)

I(j) I(i0)

G0

F0

F1 G1

Note that it is computable to check whether or not a tuple is a potential span, but it
need not be computable to check whether or not a tuple is a span. Similarly, it need not be
computable to check whether a tuple is an amalgamation diagram over a potential span.

▶ Definition 4.24. An age K has the amalgamation property, written (AP), if whenever
A,B, C ∈ K and whenever fB : A → B and fC : A → C are embeddings, there is a D ∈ K such
that there are embeddings αB : B → D and αC : C → D where αB ◦ fB = αC ◦ fA.

Suppose s is a Turing degree. We say a computable age K has the s-computable
amalgamation property, written (s-cAP), if there is an s-computable function which maps
each potential span to an amalgamation diagram over it.

The proof of the next result can be found in Appendix B.

▶ Proposition 4.25. Suppose K is a computable age with (AP). Then K has (EI(K)-cAP).

The focus of this paper is a weakening of the amalgamation property, known as the cofinal
amalgamation property; we will see that this is computationally more complicated than the
amalgamation property.

▶ Definition 4.26. Suppose K is a computable age. A collection of distinguished
extensions, written DEK, is a collection of embeddings such that

for F ∈ DEK we have dom(F ), codom(F ) ∈ K,
for F ∈ DEK and isomorphisms G with codom(G) = dom(F ) and dom(G) ∈ K we
have F ◦G ∈ DEK,
for F ∈ DEK and isomorphisms H with dom(H) = codom(F ) and codom(H) ∈ K we
have H ◦ F ∈ DEK,
for all I(i) ∈ K there is an F ∈ DEK with dom(F ) = I(i).

Such a collection DEK is said to be s-computable when it is s-computable as a set.

▶ Definition 4.27. Suppose ααα = (α0, α1) : K0 → K1 is a computable isomorphism and DEK0

is a collection of distinguished extensions in K0. Let ααα(DEK0) be the collection of embeddings
F in Cat(K1) such that ααα−1(F ) ∈ DEK0 .

▶ Lemma 4.28. Suppose ααα = (α0, α1) : K0 → K1 is a computable isomorphism and DEK0 is
a computable collection of distinguished extensions in K0. Then ααα(DEK0) is a computable
collection of distinguished extensions in K1.
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Proof. DEK0 is closed under both pre- and post-compositions of isomorphisms, and so the
result follows ◀

▶ Definition 4.29. An age K has the cofinal amalgamation property, written (CAP), if
for every A ∈ K there is an A′ ∈ K such that

there is an embedding β : A → A′ and
whenever B, C ∈ K and fB : A′ → B and fC : A′ → C are embeddings, there is a D ∈ K
and there are embeddings αB : B → D and αC : C → D where αB ◦ fB = αC ◦ fC.

We call such an A′ an amalgamation base.

▶ Definition 4.30. Suppose K is a computable age. We define a witness to (CAP) to be a
pair (ABK, fABK) satisfying the following.

(a) ABK is a collection of distinguished embeddings such that if F ∈ ABK, then codom(F )
is an amalgamation base, and

(b) fABK takes as input tuples (F,G0, G1) such that (i) F ∈ ABK, (ii) (G0, G1) is
a potential span, and (iii) dom(G0) = dom(G1) = codom(F ), and outputs an
amalgamation diagram over (G0, G1).

Such a witness is said to be s-computable if ABK is s-c.e. and fABK is an s-computable
partial function. We say that K has (s-cCAP) if it has an s-computable witness to (CAP).

▶ Definition 4.31. Let ααα = (α0, α1) : K0 → K1 and suppose (ABK0 , fABK0
) is a witness to

(CAP) for K0. Let ααα(fABK0
) be the map which takes as input those tuples (F,G0, G1) such

that (i) F ∈ ααα(ABK0), (ii) (G0, G1) is a potential span in K1, and (iii) dom(G0) = dom(G1) =
codom(F ), and outputs (ααα(H0),ααα(H1)) where (H0, H1) = fABK0

(
ααα−1(F ), ααα−1(G0), ααα−1(G1)

)
.

▶ Lemma 4.32. Let ααα = (α0, α1) : K0 → K1 be a computable isomorphism, and suppose that
(ABK0 , fABK0

) is a witness to (CAP) for K0 which is computable. Then (ααα(ABK0),ααα(fABK0
))

is a witness to (CAP) for K1 which is computable.

Proof. By Lemma 4.28, the set ααα(ABK0) is a collection of distinguished extensions.
Definition 4.30 (a) holds, as being an amalgamation base is closed under isomorphism
of computable ages. Definition 4.30 (b) holds, as being an amalgamation of a potential span
is closed under isomorphisms of computable ages. Finally, (ααα(ABK0),ααα(fABK0

)) is computable
because it can be computed from (ABK0 , fABK0

) and ααα, both of which are computable. ◀

The following corollary is immediate.

▶ Corollary 4.33. Let s be a Turing degree, and suppose K0 has (s-cCAP) and K1 is
computably isomorphic to K0. Then K1 has (s-cCAP).

▶ Proposition 4.34. The following are equivalent for a computable age K.
K has (CAP).
K has (s-cCAP) for some Turing degree s.

Proof. Note that any witness to (CAP) can be encoded by a single real. The computable age
K has (CAP) if and only if there is some witness to (CAP) for K, which then has (s-cCAP)
where s is the Turing degree of the real encoding the witness. ◀

▶ Lemma 4.35. If an age has (AP), then it also has (CAP), If a computable age has (cAP),
then it also has (cCAP).
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Proof. This follows since in an age with (AP), every element is an amalgamation base. ◀

Earlier we saw how to obtain bounds on the computational power needed for the effective
versions of each of (HP), (JEP), and (AP). We now do analogously with (CAP), but the
the bounds are higher. The proof of this technical but important result is in Appendix B.

▶ Theorem 4.36. Let K be a computable age, and let AB be the collection of amalgamation
bases in K. Then (a) AB ≤T EI(K)′′, and (b) when K has (CAP), it has (EI(K)′′-cCAP).

5 Upper Bounds

5.1 Ultrahomogeneous Structures
▶ Definition 5.1. A structure M is ultrahomogeneous if for every finitely generated
structure A ⊆ M and every isomorphism f : A → A∗ with A∗ ⊆ M there is an automorphism
g : M → M such that g ↾A= f .

The structure M is a Fraïssé limit of K if the age of M is K and M is ultrahomogeneous.

▶ Definition 5.2. A computable structure M is computably ultrahomogeneous if there
is a function g which takes in pairs of finite tuples (a,b) of equal length from M and returns
a code for some bijection of the underlying set of M with itself, such that if tcl(a,b) is
an isomorphism from clM(a) to clM(b), then g(a,b) is an automorphism of M extending
tcl(a,b). We call such a map g a witness to the computable ultrahomogeneity of M.

The structure M is a computable Fraïssé limit of K if M is computably ultrahomogeneous
and K is a computable representation of the age of M.

Note that the paper [13] defines a notion of “computable homogeneity” where instead of
taking in two ≃-equivalent tuples and returning an automorphism it takes in two ≃-equivalent
tuples a,b and an extra point x and returns a new point y such that ay ≃ bx. Note that their
notion of computable homogeneity is equivalent to our notion of computable ultrahomogeneity
via a standard back-and-forth construction of an automorphism from one-point extension
axioms.

Our next result, Proposition 5.3, is a strengthening of one direction of [13, Theorem 3.9];
for a proof, see Appendix C.

▶ Proposition 5.3. Suppose M is an arbitrary countable structure with s-computable domain
which is s-computably ultrahomogeneous. Then K[M] has (s-cAP).

The other direction of [13, Theorem 3.9] is equivalent to the following result.

▶ Proposition 5.4 ([13, Theorem 3.9]). Suppose K is a computable age that has (cHP),
(cJEP), and (cAP). Then K has a computable Fraïssé limit.

Putting the above together, we have the following.

▶ Corollary 5.5. Suppose K is a computable age with (HP), (JEP), and (AP). Then K has
an EI(K)-computable Fraïssé limit.

Proof. This is immediate from Lemma 4.17 and Propositions 4.20, 4.25, and 5.4. ◀

The next result uses a standard back-and-forth construction to build the appropriate
automorphism; for a proof, see Appendix C.

▶ Proposition 5.6. Let M be a computable structure, and suppose M is ultrahomogeneous.
Then M is EI(M)-computably ultrahomogeneous.



13

5.2 Cofinally Ultrahomogeneous Structures
▶ Definition 5.7. Suppose M is a computable structure. We say that E is a cofinal
collection (in M) if the following hold.

E is a collection of finite tuples in M.
For every finite tuple a in M there is some b ∈ E such that a ⊆ clM(b).
If b ∈ E and if a ⊆ clM(b) is a finite tuple, then ab ∈ E.
For all finite tuples a and b in M, if a ∈ E and a ≃ b, then b ∈ E.

▶ Definition 5.8. A structure M is cofinally ultrahomogeneous if for every finite
set A ⊆ M there exists some finitely generated B ⊆ M with A ⊆ B such that whenever
f : B → B∗ is an isomorphism with B∗ ⊆ M then there is an automorphism f∗ : M → M
such that f∗ ↾B= f .

The following is an example from [15] of a cofinally ultrahomogeneous structure which
is not ultrahomogeneous. For more details on this example as an instance of cofinal
amalgamation, see [29, Example 3.1.9].

▶ Example 5.9. Let Z = (G,E) be the unique (up to isomorphism) infinite undirected
irreflexive graph with a single connected component such that every element has degree 2,
i.e., Z consists of a single Z-chain. For distinct a, b, c ∈ Z we say that c is between a and b
if there is a c0, . . . , cn−1 such that (a, c0), (c0, c1), . . . , (cn−1, b) ∈ E and c ∈ {ci}i∈[n−1]. We
also say that a and b are distance n+ 1 apart if the collection of elements between a and b

has size n.
Note that Z is not ultrahomogeneous, as whenever a0, a1, b0, b1 ∈ Z are such that neither

pair (a0, a1) nor (b0, b1) has an edge, then these pairs have the same quantifier-free type,
even when the distance between a0 and a1 is different than the distance between b0 and b1.

Call a subset A of Z closed if whenever a, b ∈ A are distinct and c is between a and b then
c ∈ A. Note that given any two finite closed sets of the same size, there is an automorphism
of Z taking one to the other. Also note that every finite set of elements is contained in a
finite closed set. Therefore Z is cofinally ultrahomogeneous. ⌟

▶ Definition 5.10. Let M be a computable structure and suppose E is an s-computable
cofinal collection in M. We say that M is s-computably cofinally ultrahomogeneous
(with respect to E) if there is an s-computable g such that

dom(g) is the collection of pairs (a,b) of tuples in M where a ∈ E and a ∼ b,
if (a,b) ∈ dom(g), then g(a,b) is the index of a computable bijection ga,b : M → M,
where (i) ga,b(a) = b; and (ii) if a ≃ b then ga,b is an automorphism of M.

For proofs of the next four propositions, see Appendix C.

▶ Proposition 5.11. Let M be a computable structure. The following are equivalent.
(a) M is cofinally ultrahomogeneous.
(b) There is some Turing degree s such that M is s-computably cofinally ultrahomogeneous.

▶ Proposition 5.12. Let M be a cofinally ultrahomogeneous structure with respect to some
cofinal collection E. If a ∈ E, then the substructure clM(a) is an amalgamation base in
K[M].

▶ Proposition 5.13. Let M be a cofinally ultrahomogeneous structure. Let A0,A1 ⊆ M be
amalgamation bases in the age of M and suppose k : A0 → A1 is an isomorphism. Then
there is an automorphism g : M → M such that g ↾A0= k.
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▶ Proposition 5.14. Let s be a Turing degree, and let M be an s-computable structure that
is s-computably cofinally ultrahomogeneous. If EI(M) ≤T s then K[M] has (s-cCAP).

We already knew, by Proposition 4.21, that for any s-computable s-cofinally ultra-
homogeneous structure M, its canonical s-computable age K[M] has (s-cHP) and (s-cJEP).
Proposition 5.14 shows that it also has (s-cCAP) if EI(M) ≤T s.

▶ Definition 5.15. Let s be a Turing degree, and suppose E is a cofinal collection. An
s-computable structure M has the s-computable cofinal extension property (with
respect to E) if there is an s-computable partial function p which takes tuples (a,b, c) with
(i) a,b, c ∈ M, (ii) a, c ∈ E, (iii) a ⊆ clM(c), and (iv) a ∼ b, and which returns a
tuple d where ac ∼ bd and whenever a ≃ b, then (I) d ≃ c, (II) b ∈ clM(d), and
(III) tcl(d, c)↾b= tcl(b,a).

The following result, whose proof is in Appendix C, describes an important relationship
between the computable cofinal extension property and computable cofinal ultrahomogeneity.
The proof that (a) implies (b) is immediate and the proof that (b) implies (a) simply uses
the cofinal extension property to build an automorphism extending any isomorphism of
elements in E. This is a straightforward generalization of the proof that a structure is
ultrahomogeneous if and only if its age has the 1-point extension property.

▶ Proposition 5.16. Let s be a Turing degree, and let M be an s-computable structure.
Suppose that EI(M) ≤T s and let E be an s-computable collection of cofinal pairs. The
following are equivalent.

(a) M is s-computably cofinally ultrahomogeneous with respect to E.
(b) M has the s-computable cofinal extension property with respect to E.

▶ Definition 5.17. Suppose K is an age in L. A countable L-structure M is a cofinal
Fraïssé limit of K if M is cofinally ultrahomogeneous and the age of M is K.

▶ Definition 5.18. Suppose K is a computable age. An s-computable structure M is an
s-computable cofinal Fraïssé limit if M is s-computably cofinally ultrahomogeneous and K is
an s-computable representation of the age of M.

In Appendix C, we prove the next result under a mild technical assumption, which we
describe in the first paragraphs of the proof. (It is straightforward to generalize this to a
proof of the full result, but this requires additional bookkeeping using Proposition 4.14.)

▶ Theorem 5.19. Let s be a Turing degree. Suppose
(a) K is an s-computable age,
(b) EI(K) ≤T s, and
(c) K has (s-cHP), (s-cJEP), and (s-cCAP).

Then there is an s-computable cofinal Fraïssé limit of K.

Putting several ingredients together, we have the following corollary.

▶ Corollary 5.20. Suppose K is a computable age with (HP), (JEP), and (CAP). Then K
has an EI(K)′′-computable cofinal Fraïssé limit.

Proof. This is immediate from Lemma 4.17, Proposition 4.20, Theorem 4.36, and
Theorem 5.19. ◀

Finally, we have the following result, whose proof is in Appendix C.

▶ Theorem 5.21. Suppose M is a cofinally ultrahomogeneous structure. Then M is
EI(M)′′-computably cofinally ultrahomogeneous.



15

6 Lower Bounds

To conclude the paper, we give two main lower bound results, Theorem 6.1 (for finite relational
languages) and Theorem 6.3 (for countable languages which may be infinite or include function
symbols), and an associated corollary for each in combination with Proposition 5.14. The
proofs of the results in this section are very technical; as such, we provide a detailed proof
outline before each proof in the appendix.

6.1 Finite Relational Languages
▶ Theorem 6.1. There is a computable age K, which is the canonical computable age of
some structure in a finite relational language, such that K has (CAP) but if it has (s-cCAP)
for some Turing degree s, then 0′ ≤T s.

For the detailed proof outline followed by the full proof, see Appendix D.

▶ Corollary 6.2. There is a computable age K, which is the canonical computable age of
some structure in a finite relational language, such that if s is a Turing degree and M is an
s-computable structure that is s-computably cofinally ultrahomogeneous and a cofinal Fraïssé
limit of K, then 0′ ≤T s.

Proof. This follows immediately from Theorem 6.1 and Proposition 5.14. ◀

6.2 Arbitrary Countable Languages
▶ Theorem 6.3. There is an computable age K, which is the canonical computable age of
some structure, such that K has (CAP) but if it has (s-cCAP) for some Turing degree s, then
0′′ ≤T s.

For the detailed proof outline followed by the full proof, again see Appendix D.

▶ Corollary 6.4. There is a computable age K, which is the canonical computable age of
some structure, such that if s is a Turing degree and M is an s-computable structure that is
s-computably cofinally ultrahomogeneous and a cofinal Fraïssé limit of K, then 0′′ ≤T s.

Proof. This follows immediately from Theorem 6.3 and Proposition 5.14. ◀
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Appendix
A Computable Representations

We recall the definition of a computable representation of a language and a computable
representation of a structure.

▶ Definition A.1. Let L be a countable language. A computable representation of L is
a pair of maps (RelL,FunctL) where

RelL is a bijection from a computable subset R of ω to the set of relation symbols in
L,
FunctL is a bijection from a computable subset F of ω to the set of function symbols
in L,
R and F are disjoint, and
the map arL which takes an element of R ∪ F and returns the arity of the relation
symbol or function symbol is computable.

▶ Definition A.2. Let L be a countable language with computable representation (RelL,FunctL)
and let M be an L-structure. A computable representation of M is a bijection ιA from
a c.e. subset M of ω to the underlying set of M such that the following three sets are each
c.e.:{

(n,a) : n ∈ dom(RelL), a ∈ M, and M |= RelL(n)(ιM(a))
}

{
(n,a) : n ∈ dom(RelL), a ∈ M, and M |= ¬ RelL(n)(ιM(a))

}{
(f,a, b) : f ∈ dom(FunctL), a ∈ M, and M |= FunctL(f)(ιM(a)) = ιM(b)

}
We say that an L-structure M is computably enumerable (c.e.) if the underlying set of
M is a c.e. subset of ω and the identity map on this set is a computable representation of
M. We say M is computable if the underlying subset of ω is a computable subset.

The following is a standard result of computable model theory which shows that there is
little difference between computable and c.e. L-structures.

▶ Lemma A.3. Uniformly in the index for a computable representation of a structure M
one can compute a computable representation of M whose underlying set is a coinfinite
computable subset of ω, along with an index for the underlying set of the new representation
(as a computable subset of ω).

B Proofs of Results from Section 4

▶ Proposition 4.14. Let K be a computable age and suppose (Fi)i∈ω is a computable
sequence of embeddings where for each i ∈ ω there is a ki ∈ ω such that dom(Fi) = IK(ki)
and codom(Fi) = IK(ki+1).

Then there is a computable age K∗ which is computably isomorphic to K, and a computable
sequence (IK(ℓi))i∈ω such that for i ∈ ω, we have aK∗:ℓi

≃ aK:ki
and AK∗:ℓi

⊆ AK∗:ℓi+1 , and

tcl(aK:ki+1 ,aK∗:ℓi+1) ◦ tcl(aki
, range(Fi)) = tcl(aki

,aK∗:ℓi
).

Proof. First for i < j ∈ ω let Fi,j = Fj ◦Fj−1 ◦· · ·◦Fi+1 ◦Fi. We build a sequence (di,Di)i∈ω

of structures such that for all i ∈ ω, we have di ∈ Di ⊆ Di+1, and di ≃ aK:ki , and also
tcl(aK:ki+1 ,di+1) ◦ tcl(aki

, ci) = tcl(aki
,di). We do this by simultaneously enumerating all



19

the elements AK:km for m ∈ ω. When a new element x appears in an AK:km we first check
to see if there is some i < m such that x is the image under Fi,m of some element which
already has been enumerated. If it is, then we do nothing. If it is not, then we check to see
if there is some j > m such that the image of x under Fm,j is some element y which has
already been enumerated. If so, then we add y to Dm and do nothing with x. If neither of
these holds, then we add x to Dm.

Given a tuple xxx in some Dm, there must be some j such that each element of xxx is in one
of {AK:k0}s∈[j]. We can then use this fact along with the maps Fs,t for s, t ∈ [j] to determine
which literals hold of xxx.

It is then clear that dm ≃ AK:km for all m ∈ ω. Therefore we can find a computable age
K∗ which contains K along with (di,Di)i∈ω and which further contains these collections in
such a way that ensures that K and K∗ are computably isomorphic. ◀

▶ Proposition 4.25. Suppose K is a computable age with (AP). Then K has (EI(K)-cAP).

Proof. We describe an algorithm which uses EI(K) to map a potential span (F0, F1) to an
amalgamation diagram over it.

Step 1:
Use EI(K) to check whether each of F0 and F1 is an embedding.

Step 2, Case a: at least one of F0 or F1 is not an embedding
Let i be such that I(i) = codom(F0). Let I = (I(i), I(i), ai) be the identity map on I(i). Let
G = (codom(F1), I(i),ai). Output the pair (G, I), which is an amalgamation diagram over
(F0, F1).

Step 2, Case b: both F0 and F1 are embeddings
Use EI(K) to search for a pair (G0, G1) which is an amalgamation diagram over (F0, F1).
Because K satisfies (AP) we will always find such an amalgamation diagram. Output the
pair (G0, G1). ◀

▶ Theorem 4.36. Let K be a computable age, and let AB be the collection of amalgamation
bases in K. Then (a) AB ≤T EI(K)′′, and (b) when K has (CAP), it has (EI(K)′′-cCAP).

Proof. We will first define EI(K)′′-computable functions h1, h2 and h3. Let h1 be the
function which takes as input a tuple (F,G0, G1, H0, H1) where

F,G0, G1, H0, H1 are potential embeddings,
codom(F ) = dom(G0) = dom(G1),
codom(H0) = codom(H1), and
dom(Hi) = codom(Gi) for i ∈ {0, 1},

and which returns 1 as output if both
F is an embedding and
(H0, H1) is an amalgamation diagram over (G0, G1),

and returns 0 as output otherwise.
Note that h1 is EI(K)-computable as we can determine from EI(K) whether or not a

potential embedding is an embedding and hence we can also determine from EI(K) whether
or not (H0, H1) is an amalgamation diagram over (G0, G1).
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Let h2 be the function which takes as input a triple (F,G0, G1) of potential embeddings
where codom(F ) = dom(G0) = dom(G1), and which returns 1 if there exists (H0, H1) such
that h1(F,G0, G1, H0, H1) = 1, and returns 0 otherwise.

Observe that h2 holds of a specific potential span (G0, G1) along with a potential
embedding F if and only if there is an amalgamation diagram over (G0, G1) for which F is an
embedding into dom(G0). Note that h2 is h′

1-computable and hence is EI(K)′-computable.
Finally, let h3 be the function which takes as input a potential embedding F , and which

returns 1 if both
F is an embedding and
h2(F,G0, G1) = 1 whenever (G0, G1) is a potential span with dom(G0) = dom(G1) =
codom(F ),

and returns 0 otherwise.
Observe that h3 holds of F precisely when the codomain of F is an amalgamation base.

Note that h3 is h′
2-computable and hence is EI(K)′′-computable.

To prove (b), note that for any M ∈ K, we have M ∈ AB (i.e., M is an amalgamation
base) precisely when h3(idM) = 1 holds. Hence M is computable from h3, and so AB ≤T
EI(K)′′.

To prove (a), let fAB be the function which takes as input a tuple (F,G0, G1) where
F ∈ AB and where (G0, G1) is a potential span with dom(G0) = dom(G1) = codom(F ), and
which uses h1 to search for an amalgamation diagram over (G0, G1) and output the first one
it finds. Because AB consists of amalgamation bases, such an amalgamation diagram always
exists, and this function will always converge. Now suppose K has (CAP). Then AB is a
distinguished collection of embeddings and hence (AB, fAB) is a witness to (CAP). However
(AB, fAB) is h3-computable and hence EI(K)′′-computable. Therefore K has (EI(K)′′-cCAP).

◀

C Proofs of Results from Section 5

▶ Proposition 5.3. Suppose M is an arbitrary countable structure with s-computable domain
which is s-computably ultrahomogeneous. Then K[M] has (s-cAP).

Proof. Let g be a witness to the s-computable ultrahomogeneity of M. Suppose (F0, F1) is
a potential span over I(i), and suppose h0 = g(ai, range(F0)) and h1 = g(ai, range(F1)). Let
G0 be the inclusion map from codom(F0) to codom(F0) ∪ h0h

−1
1 (codom(F1)) and let G1 be

the map h0h
−1
1 composed with the inclusion into codom(G0).

It is immediate that G0 is an embedding. Further, G1 is an embedding if F1 is. Therefore
(G0, G1) is an amalgamation diagram over (F0, F1). The maps G0 and G1 are each computable
from the two maps h0 and h1, which are themselves each computable from (F0, F1) and g.
Therefore K[M] has (s-cAP). ◀

▶ Proposition 5.6. Let M be a computable structure, and suppose M is ultrahomogeneous.
Then M is EI(M)-computably ultrahomogeneous.

Proof. Let (xi)i∈ω be an enumeration (possibly with repetitions) of M. Let a,b ∈ M be
tuples with a ∼ b.

First EI(M)-computably check whether or not a ≃ b.
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Trivial Case:
If a ̸≃ b, then let ga,b be any bijection extending the map which takes the underlying set of
a to the underlying set of b in a way that ga,b(a) = b. Note that we can always find such a
map as a ∼ b.

Non-Trivial Case:
If a ≃ b we define the isomorphism ga,b : M → M in stages.

Stage 0:
Let g0

a,b = tcl(a,b)↾a.

Stage 2k + 1.
If xk ∈ range(g2k

a,b), then let g2k+1
a,b = g2k

a,b. Otherwise, let c2k be an enumeration of
dom(g2k

a,b) and let d2k be an enumeration of range(g2k
a,b). Search for a β2k ∈ ω such that

c2k
∧xβ2k

≃ d2k
∧x2k. We know such a β2k exists and hence we can EI(M)-computably find

one such value. Let g2k+1
a,b = tcl(cn

∧xβ2k
,d2k

∧x2k).

Stage 2k + 2.
If xk ∈ dom(g2k+1

a,b ), then let g2k+2
a,b = g2k+1

a,b . Otherwise, let c2k+1 be an enumeration of
dom(g2k+1

a,b ) and let d2k+1 be an enumeration of range(g2k+1
a,b ). Search for an α2k+1 ∈ ω such

that c2k+1
∧xk ≃ d2k+1

∧xα2k+1 . We know such a α2k+1 exists as M is ultrahomogeneous.
We can therefore EI(M)-computably find one such value.
Let g2k+2

a,b = tcl(c2k+1
∧x2k+1,d2k+1

∧xα2k+1).

Let ga,b =
⋃

n∈ω g
n
a,b. Clearly ga,b is uniformly EI(M)-computable in a,b and witnesses the

EI(M)-ultrahomogeneity of M. ◀

▶ Proposition 5.11. Let M be a computable structure. The following are equivalent.
(a) M is cofinally ultrahomogeneous.
(b) There is some Turing degree s such that M is s-computably cofinally ultrahomogeneous.

Proof. The implication from (b) to (a) is immediate.
Suppose (a) holds. Let E be the collection of tuples a in M such that whenever

f : clM(a) → A∗ is an isomorphism then there is an automorphism of M extending f .
We now define ga,b for all a, b in M with a ∈ E and a ∼ b. Let ta,b be the unique

bijection from the underlying set of a to the underlying set of b such that ta,b(a) = b; such
a ta,b must exist as a ∼ b.

If a ≃ b then let ga,b be any automorphism of M extending ta,b.
If a ̸≃ b then let ga,b be any bijection from the underlying set of M to itself extending
ta,b.

Let s be the Turing degree of E ∪ {ga,b : a ∈ E and b ∼ a}. Then M is s-computably
cofinally ultrahomogeneous and (b) holds. ◀

▶ Proposition 5.12. Let M be a cofinally ultrahomogeneous structure with respect to some
cofinal collection E. If a ∈ E, then the substructure clM(a) is an amalgamation base in
K[M].
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Proof. Let a ∈ E and suppose (G0, G1) is a span for which dom(G0) = clM(a). We must
show that there is some amalgamation diagram over (G0, G1). Note that there are embeddings
J0 : codom(G0) → M and J1 : codom(G1) → M. Let Ki = Ji ◦Gi for i ∈ {0, 1}. Then K0
and K1 are each embeddings of clM(a) into M. Therefore K1 ◦K−1

0 is an isomorphism from
range(K0) to range(K1).

Because a ∈ E, there is an automorphism α of M such that α↾range(K0)= K1 ◦K−1
0 . Let

C = clM
(
range(J1) ∪ α“(range(J0))

)
. Let I : range(J1) → C be the inclusion map. Then

(α ◦ J0, I ◦ J1) is an amalgamation diagram over (G0, G1), and so clM(a) is an amalgamation
base. ◀

▶ Proposition 5.13. Let M be a cofinally ultrahomogeneous structure. Let A0,A1 ⊆ M be
amalgamation bases in the age of M and suppose k : A0 → A1 is an isomorphism. Then
there is an automorphism g : M → M such that g ↾A0= k.

Proof. For each j ∈ {0, 1} let Bj ⊇ Aj be such that any embedding from Bj to M can be
extended to some automorphism of M. Because A0 is an amalgamation base there must be
a finitely generated C ⊆ M along with embeddings α0 : B0 → C and α1 : B1 → C such that
α0 ↾A0= α1 ◦ k.

Then for each j ∈ {0, 1}, the definition of Bj tells us that there is an automorphism βj of
M that extends αj . Hence β−1

1 ◦ β0 is an automorphism of M that extends k. ◀

▶ Proposition 5.14. Let s be a Turing degree, and let M be an s-computable structure that
is s-computably cofinally ultrahomogeneous. If EI(M) ≤T s then K[M] has (s-cCAP).

Proof. Suppose EI(M) ≤T s. We need to construct an s-computable witness to (CAP). Let E
be an s-computable cofinal collection that witnesses the s-computably cofinal ultrahomogeneity
of M. Let ABK[M] be the collection of embeddings between elements of K[M] whose codomain
is isomorphic to an element of E. Note that ABK[M] is computable from EI(M) and E, each
of which is s-computable.

Now let (G0, G1) be a potential span in K[M] and suppose F ∈ ABK[M] with codom(F ) =
dom(G0). We will s-computably find an amalgamation diagram (H0, H1). There are two
cases.

If (G0, G1) is not a span, then let (H0, H1) be a pair of maps such that dom(H0) =
codom(G0) and dom(H1) = codom(G1), and also such that codom(H0) = codom(H1). Note
that such a pair of maps always exists as K[M] has (JEP). We can therefore s-computably
find such a pair by searching for it using EI(M).

If (G0, G1) is a span, then let I0 : codom(G0) → M and I1 : codom(G1) → M be
embeddings. Note that such embeddings always exist as G0 and G1 are embeddings in
K(M). For i ∈ {0, 1} let Ji = Ii ◦Gi. As (G0, G1) is a span and dom(G0) = dom(G1) ∈ E

there must be an automorphism α of M which extends J−1
1 ◦ J0. Further, as M is s-

computably cofinally ultrahomogeneous, we can s-computably find one such automorphism
α, uniformly in (F,G0, G1). But then (α ◦ I0, I1) is an amalgamation diagram over (G0, G1).
Let (H0, H1) = (α ◦ I0, I1).

Let fABK[M] be the map which takes (F,G0, G1) to (H0, H1). Note that fABK[M] is s-
computable because EI(M) can be used to determine whether or not (G0, G1) is a span, and
each of the two cases s-computably finds (H0, H1). Therefore (ABK[M], fABK[M]) is a witness
to K[M] having (s-cCAP). ◀
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▶ Proposition 5.16. Let s be a Turing degree, and let M be an s-computable structure.
Suppose that EI(M) ≤T s and let E be an s-computable collection of cofinal pairs. The
following are equivalent.

(a) M is s-computably cofinally ultrahomogeneous with respect to E.
(b) M has the s-computable cofinal extension property with respect to E.

Proof. Suppose (a) holds, and let h be a function that witnesses the s-computably cofinal
ultrahomogeneity of M with respect to E. Write ha,b for function encoded by h(a,b).
Suppose a,b, c ∈ M with a, c ∈ E. If a ≃ b then ha,b is an automorphism of M that takes
a to b. Let p(a,b, c) = ha,b(c). Then E and p witness that (b) holds. Further, as E and h

are s-computable, p is also s-computable.
Now suppose (b) holds and let p be a function witnessing the s-computable cofinal

extension property for M with respect to E. Let (xi)i∈ω be an s-computable enumeration of
the domain of M. Suppose a,b ∈ M with a ∈ E. We will define by induction a sequence
of functions (hn

a,b)n∈ω and sequences of tuples (an)n∈ω and (bn)n∈ω. These will be defined
such that for each n ∈ ω, the following inductive hypotheses hold.

hn
a,b ⊆ hn+1

a,b .
an is an enumeration of the domain of hn

a,b.
bn = hn

a,b(an).
an,bn ∈ E when a ≃ b.

Base Case: n = 0
We let h0

a,b be the unique bijection from a to b, which must exist because a ∼ b. Let a0 = a
and b0 = b. Note that a0 ∈ E by hypothesis, and that b0 ∈ E when a ≃ b.

Trivial Case: n > 0 and a ̸≃ b
Let an = a∧⟨xi⟩i<n. Let hn

a,b be any bijection with domain an and codomain contained in
M which extends hn−1

a,b . Let bn = hn
a,b(an).

Inductive Case: n = 2k + 1 for some k ≥ 0 (and not Trivial Case):
If xk ∈ dom(hn

a,b) then let hn+1
a,b = hn

a,b, and let an+1 = an and bn+1 = bn. Now suppose
xk ̸∈ dom(hn

a,b). Let a∗
n+1 ∈ E be the first (relative to the s-computable enumeration of E)

tuple such that an
∧xk ∈ cl(a∗

n+1). Let an+1 = an
∧xk

∧a∗
n+1, and note that an+1 ∈ E as well.

Let bn+1 = p(an,bn,an+1). Note that by the inductive hypothesis, an ≃ bn, which implies
that an+1 ≃ bn+1 and hence bn+1 ∈ E. Let hn+1

a,b be the bijection which takes an+1 to bn+1.
Note that hn

a,b ⊆ hn+1
a,b because an is a subtuple of an+1.

Inductive Case: n = 2k + 2 for some k ≥ 0 (and not Trivial Case):
If xk ∈ range(hn

a,b) then let hn+1
a,b = hn

a,b and let an+1 = an and bn+1 = bn. Now suppose
xk ̸∈ range(hn

a,b). Let b∗
n+1 ∈ E be the first (relative to the s-computable enumeration of

E) tuple such that bn
∧xk ∈ cl(b∗

n+1). Let bn+1 = bn
∧xk

∧b∗
n+1, and note that bn+1 ∈ E as

well. Let an+1 = p(bn,an,bn+1). Note that by the inductive hypothesis, an ≃ bn, which
implies that an+1 ≃ bn+1 and hence an+1 ∈ E. Let hn+1

a,b be the bijection which takes an+1

to bn+1. Note that hn
a,b ⊆ hn+1

a,b because bn is a subtuple of bn+1.

Let ha,b =
⋃

n∈ω h
n
a,b. Note that whenever a ≃ b, then by induction we have an ≃ bn for all

n ∈ ω, and hence ha,b is an automorphism of M. Further, ha,b is s-computable uniformly
from (a,b) because p is s-computable and we can compute from EI(M) whether or not each
n is in the Trivial Case. ◀
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▶ Theorem 5.19. Let s be a Turing degree. Suppose
(a) K is an s-computable age,
(b) EI(K) ≤T s, and
(c) K has (s-cHP), (s-cJEP), and (s-cCAP).

Then there is an s-computable cofinal Fraïssé limit of K.

Proof. (Under a mild technical assumption, which we now describe.) Proposition 4.14 and
Corollary 4.15 transform a sequence of embeddings into an increasing sequence of structures
with respective elements isomorphic, such that the union of the sequence produces an infinite
computable structure. In this proof we use this technique to build a cofinal Fraïssé limit. We
do so while requiring that for each an element Bn in the sequence, there is an appropriate
substructure A ⊆ Bn and an embedding from A into C that we can amalgamate the inclusion
map with the embedding. In order to do this we will need to enumerate all finite subsets of
each Bn in our sequence. Because in general our amalgamations only give us embeddings and
not inclusion maps, there is a non-trivial amount of bookkeeping needed. This bookkeeping,
though annoying, is not difficult. As such we will assume in this proof that when we have an
amalgamation diagram one element of the diagram is an inclusion and not just an embedding.

As K satisfies (s-cCAP), there is an s-computable witness to (CAP). Let (AB, fAB) be
one such.

We will now construct an increasing sequence of elements of K, (bn,Bn, ℓn)n∈ω ⊆ K
where for n ∈ ω, Bn ⊆ Bn+1. We also let Bn,k be the result of applying at most k functions
to elements in bn. Note that Bn =

⋃
k∈ω Bn,k.

Without loss of generality we can assume that each Bn has as its domain a subset of ω.
We also let (dn, Fn, Gn)n∈ω be an enumeration, with infinite repetitions, of triples where

dn is a finite subset of ω,
Fn ∈ AB, and
Gn is an embedding with dom(Gn) = codom(Fn). Let dom(Gn) = I(jn) where
jn ∈ ω.

Note that we can find a sequence which is s-computable. We will now build our sequence
in stages.

Stage 0:
Because K satisfies (JEP) there is a unique element (up to isomorphism) generated by the
empty tuple. Let c be the empty tuple, and let (c, C, i) ∈ K be an element that c generates.
Let F0 be such that F0 ∈ ABK and dom(F0) = (c, C, i). We know one such exists because
ABK is a distinguished collection of embeddings. Let B0 be the structure in the codomain of
F0.

Stage n+ 1:
Case a: Either

dn ̸⊆
⋃

i∈[n+1] Bi,n, or
dn ⊆

⋃
i∈[n+1] Bi,n but dn ̸≃ I(jn) where I(jn).

We let (bn+1,Bn+1, ℓn+1) = (bn,Bn, ℓn).

Case b: Otherwise.
Let Dn = cl(dn]) and tcl(dn,Ajn

) : Dn → Ajn
is an isomorphism. Let Kn = Gn ◦ tcl(dn,Ajn

).
Let In be the inclusion map from Dn into Bn. We then have (In,Kn) is a span. Let
(H0, H1) = fABIn,Kn

. Then (Hn
0 , H

n
1 ) is an amalgamation diagram over (In,Kn). We then

let (bn+1,Bn+1, ℓn+1) = codom(Hn
0 ).
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Note that we are assuming (as discussed at the beginning of the proof) that Hn
0 is an

inclusion map and hence Bn ⊆ Bn+1.

We now let Bω =
⋃

n∈ω Bn. Note that because we can determine from s which case we are in
and compute fAB, Bω is s-computable. It therefore suffices to prove the following two claims.

▷ Claim C.1. K[Bω] is s-computably isomorphic to K.

Proof. As K satisfies (s-cHP) we K[Bω] is an s-computable subset of K.
Now suppose IK(i) ∈ K. As K has the (s-cJEP) we can find, computably in s, embedding

M0 : (b0,B0, ℓ0) → IK(k) and M1 : IK(i) → IK(k) for some k ∈ ω. Suppose for each ℓ ∈ ω we
have Jℓ is the inclusion map from (b0,B0, ℓ0) to (bℓ,Bℓ, ℓℓ). Then there must be some n
such that (In,Kn) = (Jn,M0). Therefore, as Bn+1 is an amalgamation of (Jn,M0) there is
an embedding of IK(i) into Bn+1. Because K[Bω] has (s-cHP) this gives us an s-computable
map from K to K[Bω].

It is straightforward to check that this map, along with the inclusion from K[Bω] into K,
give us the desired s-computable isomorphism. ◁

▷ Claim C.2. Bω is s-computably cofinally ultrahomogeneous.

Proof. Let E be the collection of tuples a ∈ Bω such that a = a0a1 where a0 ∈ cl(a1) for
some n ∈ ω we have a1 ≃ bn. Note that E is s-computable as it is computable from (Bn)n∈ω

and EI(K). Further it is immediate that E is a cofinal collection with respect to Bω.
By Proposition 5.16 it suffices to show that Bω has the cofinal extension property with

respect to E. We now define an s-computable function p witnessing this fact. Suppose
(a,b, c) with a,b, c ∈ Bω, a, c ∈ E, a ⊆ cl[Bω](c) and a ∼ b. We now break into two cases.

Case 1: a ̸≃ c
We let p(a, c,d) = e be any tuple such that ac ∼ de.

Case 2: a ≃ c.
Let n0 be such that c ≃ bn0 and let n1 be such that c ⊆ bn1 . Let Ia,d be the inclusion map
from cl(a) into cl(d) and let J = Ia,d ◦ tcl(c,a). Because of how (Bn)n∈ω was defined there
must some n∗ ≥ n1 such that if In1,n∗ is the inclusion map from Bn1 into Bn∗ then there is an
amalgamation diagram (H0, H1) over (In1,n∗ , J) where codom(H0) = (bn∗+1,Bn∗+1, ℓn∗+1).
But then H1 is an isomorphism with domain cl(d) where H1 ◦ J(c) = c. Therefore if
e = H1(d) with we have e ≃ d and tcl(d, e)(a) = c. Therefore we can let p(a, c,d) = e.
Note p is therefore s-computable as the construction of (Bn)n∈ω is and EI(K) ≤T s. ◁

This completes the proof of Theorem 5.19. ◀

▶ Theorem 5.21. Suppose M is a cofinally ultrahomogeneous structure. Then M is
EI(M)′′-computably cofinally ultrahomogeneous.

Proof. Let E be the collection of tuples a such that clM(a) is an amalgamation base. Note
that E is EI(M)′′-computable by Theorem 4.36 (b).

Let E0 be a cofinal collection such that M is cofinally ultrahomogeneous with respect to
E0. By Proposition 5.12, for each a ∈ E0 the substructure clM(a) is an amalgamation base.
Therefore E0 ⊆ E and hence E is a cofinal collection.
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By Proposition 5.13, any isomorphism of amalgamation bases can be extended to some
automorphism of M. Suppose A0 and A1 are amalgamation bases that are isomorphic via a
map j and suppose A0 ⊆ B0 for some amalgamation base B0. Then there is some B1 with
A1 ⊆ B1 for which there is an isomorphism from B0 to B1 that extends the isomorphism j.
Therefore there is some function p computable from E and EI(M) which witnesses that M
has the EI(M)′′-computable cofinal extension property.

We also know that M is computable from EI(M) (and hence in particular is
EI(M)′′-computable). Therefore by Proposition 5.16, M is EI(M)′′-computably cofinally
ultrahomogeneous. ◀

D Proofs of Results from Section 6

▶ Theorem 6.1. There is a computable age K, which is the canonical computable age of
some structure in a finite relational language, such that K has (CAP) but if it has (s-cCAP)
for some Turing degree s, then 0′ ≤T s.

We begin with a detailed outline. As a first step in the proof, we computably divide
the infinite structure we are constructing into ω-many disjoint pieces such that no relation
holds between elements of distinct pieces. This will then give us ω-many distinct subages
of our canonical age such that our age has (CAP) if and only if each of the subages does.
Further, because everything is done computably, we can compute a witness for (CAP) in a
subage from a witness for (CAP) in the full age. This will allow us to reduce the problem to
(uniformly in e) constructing an age such that from any witness to (CAP) we can determine
whether or not {e}(0)↓.

We create a structure which can be divide into ω-many disjoint pieces by starting with a
base language L0 = {C,E}. We then let C be the edge relation of a directed graph consisting
of infinitely may cycles of every length. We then let E be an equivalence relation such that
each equivalence class contains at most one element of each cycle. We will then mandate
that no relation holds of a tuple with elements of cycles of different lengths. We will also
mandate that no relation holds of a tuple with elements in different equivalence classes and
that all relations are preserved if we move each element of the tuple one step along the cycle.
In this way the structure is completely determined by the structure on one equivalence class
in each cycle.

We now need to build a structure such that from any witness to (cAP) for its age we
can determine whether or not {e}(0)↓. In order to do this, we define a component structure
Wm,n for m,n ∈ ω ∪ {ω} such that m < n or m = n = ω. Intuitively Wm,n has three parts.
First it has two elements (q+, q−) which act as the root of the structure. Then connected
to q+ we have a B-chain of length m and a Y -chain of length n. Finally connected to q−
we have a B-chain of length n and a Y -chain of length m. The key property of Wm,n is
that given a substructure A of Wm,n containing {q+, q−} but where the longest B-chain and
the longest Y -chain are both at most m, then it is possible to embed A into Wm,n in two
ways: one in which the q+ gets mapped to an element connected to a B-chain of length n,
and one in which q+ gets mapped to an element connected to a Y -chain of length n. As
these cannot be amalgamated in Wm,n, this implies that A is not an amalgamation base.
Hence if {q+, q−} ⊆ A ⊆ Wm,n and A is an amalgamation base, then A must contain either
a B-chain or a Y -chain of length > m, where this chain is attached to either q+ or q−.

With this component in hand, if {e}(0)↑ we can let the eth component of the age simply
be W2,4 (plus infinitely many elements which do not interact with it) and if {e}(0)↓ we can



27

let the eth component of the age be W30,90 (plus infinitely many elements which do not
interact with it). Therefore if A is an amalgamation base over {q+, q−} then A contains
either an B-chain or Y -chain of length > 4 connected to one of q+ or q− if and only if
{e}(0)↓.

We now provide the full proof.

Proof. Let L0 = {C,E} where C,E are binary. Let M0 be the structure where
the underlying set is M0 ⊆ ω,
(M,CM0) is a directed graph,
M0 |= (∀x)(∃=1y)C(x, y) ∧ (∃=1z)C(z, x),
M0 has infinitely many C-cycles of every finite length,
EM0 is an equivalence relation on M0,
if M |= E(a, b) ∧ C(a, a∗) ∧ C(b, b∗) then M |= E(a∗, b∗), and
if A0, A1 are both C-cycles of length n then there is an a0 ∈ A0 and an a1 ∈ A1 such
that E(a0, a1) holds.

Intuitively, M0 consists of infinitely many disjoint C-cycles of every finite length. Then,
for a fixed length k we have an equivalence relation such that there are precisely k classes
which contain an element of a k-cycle and each of these equivalence classes are compatible
with the cycle.

The following definitions will be important. Suppose A ⊆ M0. We define the E-closure
of A, denoted A to be the collection of elements E-equivalent to some element of A. Let
ιA : A → A be the inclusion map.

For a ∈ M0 let τ(a) = k if a is in a k-cycle. Let

πk(A) = {a ∈ A : a is in a k-cycle}.

For E-equivalence classes A,B let A ≤ B if minA ≤ minB (in the ordering on ω). For
each k ∈ ω let Xk be the ≤-minimal E-equivalence class containing elements in a k-cycle.
Let γk(A) = A ∩Xk, i.e., the set of Xk corresponding to A.

Note that the sets Xk, the map A 7→ A, and the maps γk, τ and πk are all computable
(uniformly in k where applicable).

If f : A → B is an embedding then we must have τ(f(a)) = τ(a) for all a ∈ A. Therefore
if f : A → B is any embedding then it can be uniquely extended to an embedding f : A → B.

Further if fk : πk(A) → B is an embedding (for k ∈ ω) then there is a unique embedding∐
i∈ω fi : A → B such that

(
∐

i∈ω fi : A)↾πk(A)= fk

for all k ∈ ω.
Suppose L1 is a language disjoint from L0. Let L∗ = L0 ∪ L1. We say an L∗-structure

M is compatible with M0 if for all R ∈ L1 and M |= R(a0, . . . , ak−1), we have
M |=

∧
i≤j∈[k] E(ai, aj) and

if M |=
∧

i∈[k] C(ai, bi) then M |= R(b0, . . . , bk−1).

So M is compatible with M0 if
we can M break up into substructures, one for each E-equivalence class, with no
relations holding between tuples across equivalence classes, and
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if two equivalence classes are on cycles of the same length then the corresponding
structures are the same on both the equivalence classes (and the cycles maps give rise
to an isomorphism between the structures).

In particular, if (Ni)i∈ω is a sequence of ω-many countable L1-structures where the
underlying set of each Ni is Xi, then there is a unique L∗-structure

∐
i∈ω Ni which is

compatible with M0 such that

(
∐

i∈ω Ni)↾Xk
= Nk.

Suppose that Ki is the age of Ni for each i ∈ ω. Let Kω be the age of
∐

i∈ω Ni. The
following are then immediate.

If the structures (Ni)i∈ω are uniformly computable then
∐

i∈ω Ni is computable.
Ki has (HP) and (JEP) for all i ∈ ω ∪ {ω}.

We will now prove two important claims which will allow us to reduce our task to the
construction to subages. First though we need some definitions.

Note that if (Nk)k∈ω is uniformly computable then
∐

i∈ω Ni is computable.

▷ Claim D.1. Suppose Ki has (CAP) for each i ∈ ω. Then Kω has (CAP).

Proof. If fB : A → B and fC : A → C is such that for all k ∈ ω there are embeddings
gB,k : πk(B) → πk(D) and gC,k : πk(B) → πk(D) with gB,k ◦ fB ↾πk(A)= gC,k ◦ fC ↾πk(A)
then gB : B → D and gC : B → D with gB ◦ fB = gC ◦ fC when gB =

∐
k∈ω gB,k and

gC =
∐

k∈ω gC,k.
In particular, this implies that if Ki has (CAP) for all i ∈ ω, then Kω has (CAP) as well.

◁

▷ Claim D.2. Suppose (AB, fAB) is a witness to (CAP) for Kω. Then, uniformly in e ∈ ω

we can compute a witness to (CAP) for Ke.

Proof. Note that as L∗ is a relational language, every subset of an L∗-structure is a
substructure. Further notice that from (AB, fAB) we can find a a witness to (CAP) such
that whenever a and a∗ enumerate the same set (possibly with repetitions), a ∈ AB if and
only if a∗ ∈ AB. Hence it suffices to identify the structures A such that (a,A, i) ∈ AB for
some a and i. Therefore we will abuse notation and say A ∈ AB in this situation.

For B ∈ AB let Bk be the collection of elements b in b with τ(b) = k. Let A ∈ ABKe if
and only if A = Be for some B ∈ AB.

Suppose (F0, F1) is a potential span in Ke with dom(F0) ∈ AB. Further suppose B ∈ AB
is such that Be = dom(F0). Let (F ∗

0 , F
∗
1 ) be the maps where

dom(F0)∗ = dom(F1)∗ = Be,
for i ∈ {0, 1}, codom(Fi)∗ = codom(Fi) ∪ (B \ Be), and
for i ∈ {0, 1}, Fi ↾dom(Fi)= Fi and Fi ↾B\Be

= id.
It is clear that (F ∗

0 , F
∗
1 ) is a potential span in Kω. Let fABF∗

0 ,F∗
1

= (G0, G1). For i ∈ {0, 1}
let G−

i = Gi ↾codom(Fi). We then have range(G−
i ) ⊆ πe(range(Gi) for i ∈ {0, 1}. Therefore

(G−
0 , G

−
1 ) is an amalgamation diagram over (F0, F1). Hence we can let ABKe(F0, F1) =

(G−
0 , G

−
1 ). ◁

Note that it is not the case that if Ki has (AP) for all i ∈ ω, then Kω has (AP). This is
because the age of M0 does not have (AP).
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By Claims D.1 and D.2, it therefore suffices to construct a sequence of ages (Ke)e∈ω each
with (CAP) such that whenever (ABKe , fABKe

) is a witness to (CAP) we can (uniformly in e
and the witness) determine whether or not {e}(n)↓.

Let L1 = {B, Y } where both are binary relations. Let Wm,n be the structure where
the underlying set consists of elements {xi}i∈ω ∪ {b+

i }i<m ∪ {b−
i }i<n ∪ {y+

i }i<n ∪
{y−

i }i<m ∪ {q+, q−};
B(a, c) holds if either
◦ a = q□ and c = b□0 for □ ∈ {+,−}, or
◦ a = b□i and c ∈ b□i+1 for some i + 1 < k□ where □ ∈ {+,−} and k+ = m and
k− = n;

Y (a, c) holds if either
◦ a = q□ and c = y□0 for □ ∈ {+,−}, or
◦ a = y□i and c ∈ y□i+1 for some i + 1 < k□ where □ ∈ {+,−} and k+ = n and
k− = m; and

no other relations hold.

Note the {xi}i∈ω are there simply to ensure the structure is infinite.
Now we define for i ∈ ω

Ni =
{
W30,90 if {i}(0)↓,
W2,4 if {i}(0)↑ .

Note that if m0 ≤ m1 and n0 ≤ n1 then Wm0,n0 ⊆ Wm1,n1 and so {Ni}i∈ω are uniformly
computable. Therefore

∐
i∈ω Ni is a computable structure.

Working in Ki for some i ∈ ω, suppose that A ∈ ABKi with {q+, q−} ⊆ A. Let
B(A), Y (A) be the number of elements in A in a B-edge and a Y -edge respectively. Let
k(A) = max{|B(A)|, |Y (A)|}.

Suppose {i}(0) ↓. To get a contradiction also suppose that k(A) < 14. Let A0 be the
structure which extends A by ensuring that the B-chain connected to q+ has length has least
31 elements. Let A1 be the structure which extends A by ensuring that the Y -chain connected
to q+ has at least 31 elements. Note both A0, A1 ∈ Ki as there is no way to distinguish
q+, q− in Ni and Ki has (HP). However, it is impossible to amalgamate A0, A1 over {q+, q−}.
Therefore any element of AB containing {q+, q−} must have at least 14 elements in B-edges
and at least 14 elements in Y -edges.

But, if {i}(0)↑ then there are only 13 elements in B-edges and 13 elements in Y -edges.
Therefore, we can computably determine (uniformly in i) whether {i}(0) halts by looking
at an the first element of AB containing {q+, q−}. Therefore from any witnesses to the
(s-cCAP) we can compute 0′.

Finally, we need to show that Ki has (CAP). But this follows from the fact that any
substructure of Ni containing the maximal Wm,n is an amalgamation base. ◀

▶ Theorem 6.3. There is an computable age K, which is the canonical computable age of
some structure, such that K has (CAP) but if it has (s-cCAP) for some Turing degree s, then
0′′ ≤T s.

Again we begin with a detailed outline. As with the proof of Theorem 6.1, we first divide
our structure into ω-many non-interacting parts. However as our language is infinite this
can easily be done assuming we have ω-many unary relations which partition our structure
and that no other relation holds of a tuple that has elements in distinct elements of this
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partition. Further there is no harm in assuming that our age contains the age constructed in
Theorem 6.3. In particular, we can assume that can compute EI(K) from any witness to
cofinal amalgamation of our age.

In the construction, we choose a function f : ω × ω → {0, 1} such that for any e ∈ ω,
{e}0′(0)↓ if and only if Φe = {n : f(e, n) = 0} is finite. With this function in hand we will
want to (uniformly in e) construct an age such that we can determine from a witness to
cofinal amalgamation for the age whether or not {n : f(e, n) = 0} is finite.

In order to do this we will need to define a given component structure Wσ for σ ∈ 2<ω.
This component will consist of a structure whose reduct to the appropriate sublanguage is
W|Φe|,1+|Φe|, but which will be in a language that also has ω-many unary relation symbols
{Ui}i∈ω. We will then use σ to determine whether or not Ui holds for each i. Specifically, if
k ̸∈ Φe then ¬Ui(x) will always hold. However, if k ∈ Φe and ℓ = |{i < k : i ∈ Φe}| then
whether or not Ui(x) holds will be determined by the value of σ(ℓ).

The effect of this is that if len(σ) > 1 + |Φe| then Wσ∧0 and Wσ∧1 are isomorphic. But if
Φe is infinite then Wσ∧0 and Wσ∧1 are never isomorphic. Because we can compute EI(K)
from any witness to cofinal amalgamation, this reduces the problem of determining whether
Φe is infinite to the problem of finding a ge such that whenever Φe is finite, ge ≥ 1 + |Φe|.
But if Φe is finite and A ⊆ Wσ is an amalgamation base containing {q+, q−} then A must
contain either a B-chain or a Y -chain, which must be of length 1 + |Φe|. So when Φe is finite,
we can determine from any such amalgamation base the value |Φe|.

We now provide the full proof.

Proof. Let (ui)i∈ω be a non-decreasing computable enumeration of finite sets such that⋃
i∈ω ui = {e ∈ ω : {e}(0) ↓}. Let f : ω × ω → ω be the computable function where

to compute f(e, n) we run the following algorithm and return the nth output. Call this
“Program f”.

Stage 0:
Create a variable which takes values in ω and which we think of as “maximal oracle call”
made. We denote this variable by oc. We set oc to 0.

Stage n+ 1: We break the stage into three cases.
Case 1: un+1 ↾oc= un ↾oc and the Turing machine simulating {e}un(0) has halted after n
steps.
In this case output 1, i.e., f(e, n) = 1.

Case 2: un+1 ↾oc= un ↾oc and {e}un+1(0) has not halted after n steps.
Run {e}un+1(0) for the (n+ 1)st step. If an oracle call larger than oc was made, then update
the value of oc to be the index of this oracle call. Output 0, i.e., f(e, n) = 0.

Case 3: un+1 ↾oc ̸= un ↾oc.
Run {e}un+1(0) for n+ 1 steps and set oc to be the largest oracle call made. Output 0, i.e.,
f(e, n) = 0.

▷ Claim D.3. For any e ∈ ω the following are equivalent
(a) {n : f(e, n) = 0} is finite,
(b) {e}0′(0)↓
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Proof. Suppose (b) holds, i.e., {e}0′(0)↓. Then the program only makes a finite number of
oracle calls. Let ℓ be the largest such oracle call. Let k be such that

ℓ < k, i.e., every oracle call in the computation {e}0′(0) is less than k, and
for all k∗ ≥ k, we have uk∗ ∩ [ℓ] = uk ∩ [ℓ].

Note we can always find such a k as the Ui’s are non-decreasing. But then for all k∗ > k we
have f(e, k∗) = 1 and so (a) holds.

Now suppose (b) does not hold, i.e., {e}0′(0)↑. Then either {e}0′(0) makes arbitrarily
large oracle calls, or there is a bound on the size of the oracle calls and the program runs
forever. In the former situation, Case 3 occurs infinitely often, and in the latter situation,
Case 2 occurs infinitely often. In either situation, {n : f(e, n) = 0} is infinite. ◁

We will construct a computable age K with (CAP) but where, for any witness to (CAP),
we can compute whether or not {n : f(e, n) = 0} is finite for each e. By Claim D.3 this will
suffice to prove our result. For convenience we will let Φe = {n : f(e, n) = 0}.

Let L− = {Pi}i∈ω be a computable language consisting of only unary relations. Let N −

be a computable L−-structure such that {PN −

i }i∈ω is a partition of N − and each PN −

i is
infinite.

Suppose
(Li)i∈ω is a uniformly computable sequence of disjoint relational languages each
disjoint from L−,
L =

⋃
i∈ω Li ∪ L−,

Ni is an Li-structure with underlying set PN − for i ∈ ω, and
Nω is the L-structure where
◦ Nω ↾L−= N −,
◦ if Nω |= R(a0, . . . , an−1) where R is an atomic formula in Lk, then Nω |=∧

i∈[n] Pk(ai), and
◦ (Nω ↾P Nω

i
)↾Li

= Ni.
For each i ∈ ω ∪ {ω}, let Ki be the canonical computable age of Ni.

The following are then immediate.
(a) Ki has (HP) for all i ∈ ω ∪ {ω}.
(b) Ki has (JEP) for all i ∈ ω ∪ {ω}.
(c) If Ki has (CAP) for all i ∈ ω, then Kω has (CAP).
(d) From any s-computable witness for (CAP) in Kω, we can compute an s-computable

witness for (CAP) in Kn for all n ∈ ω, uniformly in n.

It therefore suffices to define, uniformly in n, a computable structure Nn such that Kn

has (CAP) and such that we can determine uniformly in n whether or not {n : f(e, n) = 0}
is infinite from a witness to (CAP) in Kn.

We now define Ke, uniformly in e. Let Le = {Be, Y e, Re} ∪ {Qe} ∪ {Ue
i }i∈ω where

Be, Y e, Re are binary relation symbols, Qe is a unary relation symbol and Ue
i is a unary

relation symbol for each i ∈ ω. In what follows, for ease of reading, we will omit the
superscripts as they will always be e.

Let me = |Φe| if Φe is finite and ω otherwise. For each σ ∈ 2<ω we define the structure
Wσ as follows.

The underlying set is

{b+,σ
i }i<1+me

∪ {b−,σ
i }i<me

∪ {y+,σ
i }i<me

∪ {y−,σ
i }i<1+me

∪ {qσ
+, q

σ
−}.

Q(a, b) holds if and only if {a, b} = {qσ
+, q

σ
−}. We call qσ

+, q
σ
− the roots of Wσ.
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B(a, c) holds if either
◦ a = qσ

□ and c = b□,σ
0 for □ ∈ {+,−}, or

◦ a = b□,σ
i and c = b□,σ

i+1 for some i + 1 < k□ where □ ∈ {+,−} and k+ = 1 + me

and k− = me.
Y (a, c) holds if either
◦ a = qσ

□ and c = y□,σ
0 for □ ∈ {+,−}, or

◦ a = y□,σ
i and c ∈ y□,σ

i+1 for some i < k□ where □ ∈ {+,−} and k+ = me and
k− = 1 +me.

For i ∈ ω, if f(e, i) = 1 then Wσ |= (∀x) ¬Ui(x).
For i ∈ ω, if f(e, i) = 0 and k = |{j < i : j ∈ Φe}| then
◦ if k < len(σ) and σ(k) = 1 and x ̸∈ {q+, q−}, then Wσ |= Ui(x), and
◦ otherwise, Wσ |= ¬Ui(x).

We let Ne be the disjoint amalgamation of the structures {Wσ : σ ∈ {0, 1}<ω}. Note
that the structures Wσ are uniformly c.e. in σ and so Ne is computable.

One can think of the {B, Y }-structure of Wσ as consisting of two roots qσ
+, q

σ
− and

attached to each root is a B-chain and a Y -chain, where the B-chain attached to qσ
+ is longer

than the Y -chain and the reverse is true of the chains attached to root qσ
−. On top of the

{B, Y } structure we also add a {Ui}i∈ω structure where each such unary relation either holds
or doesn’t hold of all non-root elements.

In order to determine whether or not Ui holds we look at the function f(e, i). On the i
for which f(e, i) = 1, the relation Ui does not hold for any σ. However, if f(e, i) = 0 then
we look at the number of j less than i such that f(e, j) = 0, and we use σ applied to that
number to determine whether or not Ui holds.

For σ0, σ1 ∈ 2<ω, let ισ0,σ1 : Wσ0 → Wσ1 be the map such that for xσ0 ∈ Wσ0 we have
ισ0,σ1(xσ0) = xσ1 (where x is either q+ or q−, or is b+

i , b−
i , y+

i , or y−
i for some i).

The effect of this is that if Φe is finite, and if len(σ) ≥ 1 + max Φe, then the map ισ∧0,σ∧1
from Wσ∧0 to Wσ∧1 is an isomorphism.

But, if Φe is infinite, then for every σ ∈ 2<ω and every V ⊆ Wσ∧0 with V ̸⊆ {qσ∧0
+ , qσ∧0

− }
the map ισ∧0,σ∧1 ↾V from V to ισ∧0,σ∧1“[V ] ⊆ Wσ∧1 is not an embedding. This is because
whenever

|{j < i : f(e, j) = 0}| = len(σ)

and f(e, i) = 0 then

Wσ∧0 |= (∀x) ¬Ui(x)

and

Wσ∧1 |= (∀x)
(
x ∈ {qσ∧1

+ , qσ∧1
− } ∨ Ui(x)

)
.

Therefore, if we can find an ℓ ∈ ω that guarantees either (i) ℓ is at least 1 + max Φe and
Φe is finite, or (ii) Φe is infinite, then we can determine from EI(Ke) which of (i) or (ii) holds
and hence whether or not Φe is finite.

▷ Claim D.4. Suppose (AB, fAB) is a witness to (CAP) for Ne. Then, uniformly in (AB, fAB)
and e, we can find a number ge such that whenever Φe is finite, ge = 1 + |Φe|.
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Proof. Let i be such that Ai has two elements a, b and Ai |= Q(a, b). Uniformly in AB we
can find an F ∈ AB with dom(F ) = I(i). Let C be the underlying structure of codom(F ).
Let σ ∈ 2<ω be such that range(F ) ⊆ Wσ.

Let D = C \Wσ, i.e., the collection of elements in C not in Wσ. Let E = C ∩Wσ.
Let ℓ+

B , ℓ−
B be the length of the B-chain in C connected to qσ

+, qσ
− respectively. Let ℓ+

Y , ℓ−
Y be

the length of the Y -chain in C connected to qσ
+, qσ

− respectively. Let ge = max{ℓ+
B , ℓ

−
B , ℓ

+
Y , ℓ

−
Y }.

Note ge is then at most 1 + |Φe|.
Now suppose Φe is finite. Then Wτ0

∼= Wτ1 provided that τ0 ↾|Φe|+1= τ1 ↾|Φe|+1.
Suppose, towards a contradiction, that ge < 1 + |Φe|. In this case there is a unique

embedding β : E → Wσ with β(qσ
−) = qσ

+ and β(qσ
+) = qσ

−. Let γ0, γ1 : C → C ∪ Wσ with
γ0 = id ↾C and γ1 = β ∪ id ↾D. As F ∈ AB there must be η0, η1 : C ∪ Wσ → G for some G
where η0 ◦ γ0 = η1 ◦ γ1.

But the maximal B-chain attached to qσ
+ has length 1 + |Φe| in Wσ and hence also in

C ∪Wσ. Therefore the maximal B-chain in G attached η0 ◦γ0(qσ
+) has length (at least) 1+ |Φe|.

But the maximal Y -chain in G attached to γ1(qσ
+) has length 1 + |Φe| and so the maximal

Y -chain attached to η1 ◦ γ1(qσ
+) has length (at least) 1 + |Φe|. But as η0 ◦ γ0(qσ

+) = η1 ◦ γ(q
σ
+)

this implies there is an element in G which is the start of both a B-chain and a Y -chain, each
of length (at least) 1 + |Φe|, which contradicts how Ne was constructed.

Therefore if Φe is finite we must have ge = 1 + |Φe|. ◁

We need one more ingredient to complete the result.

▷ Claim D.5. Ke has (CAP).

Proof. Suppose I(i) ∈ Ke. We need to show that there is a map F with dom(F ) = I(i) and
codom(F ) an amalgamation base. We break into two cases depending on whether or not
|Φe| is finite.

Case 1: Φe is finite.
Because I(i) ∈ Ke and Ke is the canonical computable age of Ne, there must be a finite
number of σ0, . . . , σk−1 such that Ai ⊆

⋃
i∈[k] Wσ. Let B be this union and F be the inclusion

map.
Suppose that αi : B → Ci, for i ∈ {0, 1}, are embeddings with Ci ∈ Ke. Then no

relations hold between any element of Ci \αi“[B] and any element of αi“[B]. Further, because
Wτ0

∼= Wτ1 whenever τ0 ↾1+|Φe|= τ1 ↾1+|Φe| we can find embeddings of Ci \ αi“[B] into Ne

whose images are disjoint with each other and with the image of B.
Therefore, we can find an amalgamation of α0 and α1, and so B is an amalgamation base.

As I(i) was arbitrary, this implies that Ke has (CAP).

Case 2: Φe is infinite.
Suppose C ⊆ Ne. We say c ∈ C is closed in C if whenever c is in a B-chain or Y -chain
connected to a root in Ne then c is in a B-chain or Y -chain connected to a root in C. We
say C is closed if

c is closed in C for every c ∈ C, i.e., every non-root element is connected to a root,
every root is connected via some B-edge or Y -edge to a non-root, and
if q ∈ C and Ne |= Q(q, q′) then q′ ∈ C, i.e., if we have a root we also have its pair.

If a ∈ Ne is a non-root, then because Φe is infinite, we can read off from the {Ui}i∈ω-
structure of a which Wσ it is in. Similarly, if C is closed we can read off from each root which
Wσ it came from. As such, if C0, C1 are closed there at most one embedding from C0 to C1.
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Further, every finite subset of Ne is contained in a finite closed subset of Ne.
Suppose B is closed and each αi : B → Ci, for i ∈ {0, 1}, is an embedding with Ci ∈ Ke.

Let C+
i be a closed finite subset of Ne containing Ci. There is then a unique map α+

i : B → C+
i .

Further, as there is a unique embedding from B into Ne and a unique embedding from C+
i

into Ne, we can assume without loss of generality that α+
i is an inclusion. But then we can

let D ⊆ Ne be any closed subset containing C+
0 and C+

1 . Then for each i ∈ {0, 1}, there is a
unique map from C+

i to D. Therefore D is an amalgamation of α0 and α1.
In particular, this implies that B is an amalgamation base. Hence we can let codom(F )

be any element of Ke whose underlying structure is B. Therefore Ke has (CAP). ◁

Let N be the disjoint amalgamation of Nω and the structure from Theorem 6.1. Let K
be the age of N . Then by Theorem 6.1 and Claim D.5, the age K has (CAP). Now suppose
K has (s-cCAP) for some Turing degree s. By Theorem 6.1 we can compute 0′ from s, and
so by Lemma 4.5 we can compute EI(K) from s as well. But then by Claim D.4, uniformly
in e we can determine from s whether or not Φe is finite. Hence 0′′ ≤T s. ◀
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