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—— Abstract

For any collection of finite structures closed under isomorphism (i.e., an age) which has the Hereditary
Property (HP), the Joint Embedding Property (JEP), and the Cofinal Amalgamation Property
(CAP), there is a unique (up to isomorphism) countable structure which is cofinally ultrahomogeneous
with the given age. Such a structure is called the cofinal Fraissé limit of the age.

In this paper, we consider the computational strength needed to construct the cofinal Fraissé
limit of a computable age. We show that this construction can always be done using the oracle 0(3),
and that there are ages that require 0.

In contrast, we show that if one assumes the strengthening of (CAP) known as the Amalgamation
Property (AP), then the resulting limit, called the Fraissé limit, can be constructed from the age
using 0'. Our results therefore show that the more general case of cofinal Fraissé limits requires
greater computational strength than Fraissé limits.
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1 Introduction

Given a collection of finite structures an important question is “when can these structures
be glued together to get a canonical infinite limit?”. In the case where the canonical limit is
a structure containing all finite structures and that has the “maximum amount of symmetry”
(namely, is ultrahomogeneous), this question was answered by Fraissé. Specifically, Fraissé
showed that such a limit, called a Fraissé limit, exists if and only if the collection of structures
has the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

Fraissé limits have been played a fundamental role in computer science and mathematics,
including in database theory, automata theory, model theory, and ergodic theory. Further,
there is often a tight connection between properties of the Fraissé limit (such as having
trivial definable closure, Rg-categoricity, or having an amenable automorphism group) and
corresponding properties of the collection of finite structures used to build it (respectively,
having the Strong Amalgamation Property, having only finitely many elements (up to
isomorphism) of each size, or having the Ramsey property).

Given the important connection between a class of finite structures and its Fraissé limit,
it is worth studying how computably one can construct the Fraissé limit from the collection
of structures. This computability question was first studied by Csima, Harizanov, Miller, and
Montalbén, who showed in [13] how to computably build a Fraissé limit from a computable
collection of finite structures along with computable witnesses to the Hereditary Property,
the Joint Embedding Property, and the Amalgamation Property.

Of these three properties needed to build a Fraissé limit from a collection of finite


mailto:nate@aleph0.net
https://orcid.org/0000-0002-8059-7497
mailto:freer@mit.edu
https://orcid.org/0000-0003-1791-6843
mailto:mmirabi@wesleyan.edu
https://orcid.org/0000-0003-0404-9904

structures, the Amalgamation Property is the most closely related to the symmetry of the
limit. However, often the Amalgamation Property is too restrictive and we instead only
have the weaker version of this property called the Cofinal Amalgamation Property. The
following example shows one of the ways in which the Cofinal Amalgamation Property is not
as restrictive as the Amalgamation Property (see Definitions 4.24 and 4.29).

» Example 1.1. Let £; = {f} be the language with a single unary function symbol and
let Ky be the collection of finite £s-structures M such that M = (Vz) (f(z) # z) and
M= (Vo) (f(f(2) =2) vV (f(f(f(z))) = z). Note that Ky is a Fraissé class.

Let Lr = {R} be the language with a single binary relation symbol and let Kr be
the collection of £ g-structures M where RM is the graph of a function r such that M |=
(Vz) (r(z) # ) and M [= (Vo) (r(r(z)) = z) V (r(r(r(z))) = z). Note that K does not
have the Amalgamation Property. To see this, suppose Mo is the unique element of Kz with
underlying set {x,y} and Mj is the unique element of p with underlying set {x,y, z} and
rMs(z) = y and 73 (y) = 2. If N were the result of amalgamating My and M3 over {x}
then we would have ™V (N (z)) = z and N (rV (+V (2))) = z, implying -V (z) = 2. However,
Kr does have the Cofinal Amalgamation Property, as it has amalgamation over all subsets
that are closed under r.

When studying structures with functions, one often does not care if the function is
represented via a function symbol or via a relation symbol encoding the graph of the function.
As this example shows, the Cofinal Amalgamation Property, unlike the the Amalgamation
Property, is not sensitive to the specific way that functions are represented in a structure,
and is therefore worth studying as well.

Classes of structures with the Cofinal Amalgamation Property also admit limit objects
(called cofinal Fraissé limits), but such limit objects only satisfy the weaker notion of cofinal
ultrahomogeneity. In this paper, we expand on the work in [13] and study how computationally
difficult it is to construct a cofinal Fraissé limit from a collection of finite structures satisfying
the Hereditary Property, the Joint Embedding Property, and the Amalgamation Property.

1.1 Related Work

Fraissé limits [21], the Amalgamation Property (AP), and ultrahomogeneity are key concepts
in classical model theory [22, Chapter 7], which describe an important way in which certain
countable structures can be built as a generic limit of an appropriate collection of finite
structures [10]. In recent years, deep connections between Fraissé limits and ergodic theory
have also been discovered [2, 23].

Fraissé limits and their computability have been considered in the context of verification of
database systems [7], and researchers have investigated which Fraissé limits can be described
by automata [25]. Within computer science, Fraissé limits have also been studied in the
the context of denotational semantics for programming languages [16, 17|, fuzzy logic [4],
and the complexity of constraint satisfaction problems in AI [12] and in phylogenetics and
computational linguistics [6].

In this paper, we primarily study the weaker notions of cofinal Fraissé limits, the Cofinal
Amalgamation Property (CAP), and cofinal ultrahomogeneity. Cofinal ultrahomogeneity
was introduced by Calais [8, 9] (under the name “pseudo-homogeneity”) along with the
corresponding amalgamation property and limit objects, and was rediscovered by Truss [34]
in the context of generic automorphisms. For more on the history of these notions and
their relationship to other notions of limit, amalgamation, and ultrahomogeneity, see [27]
and [26]. These other notions include the even weaker notions of weak Fraissé limits, the



Weak Amalgamation Property (WAP), and weak ultrahomogeneity, which do generalize
the cofinal concepts, but do not yet include many more known examples. For a study
of the computability of the connections between weak Fraissé limits, (WAP), and weak
ultrahomogeneity, see [3], which generalizes the results of the current paper (often requiring
substantially more complicated proofs).

For more on the Cofinal Amalgamation Property including several examples, see [28]
and [29, Section 3.1]; for a categorical presentation, see [30]. The Cofinal Amalgamation
Property has been used in the study of topological dynamics [24] and the Ramsey property
[5, 14], and has also been studied in [31], [32], and [18].

The computability of the Fraissé construction was first studied in [13], and we build on
several of their results. Isomorphisms between computable Fraissé limits were also studied in
[20] and [19], and a related computability notion was considered in [1, 11]. For more on the
computability of certain specific Fraissé limits, see [33].

2 Summary of Main Results

Given an age, i.e., a collection of finite structures closed under isomorphisms, one is often
interested in a countable structure which can be thought of as the limit of the age, i.e., a
countable structure whose age is the given one, and where the countable structure is generic
in some sense.

In this paper, we will be interested in the computable content of going from an age to
its corresponding limit. It turns out that our results on the computable content of these
constructions will primarily be in terms of the embedding information of the age. The
embedding information of a computable age K, which we denote EJ(K), describes when a
map between two elements of K can be extended to an embedding. We observe in Lemma 4.5
that £J(K) is always computable from the Turing jump of K, and is computable in the case
where the language of K is finite and relational.

The most common instance of the phenomenon of an age having a limit is that of
the Fraissé limit. Given an age (with countably many isomorphism classes) satisfying the
Hereditary Property (HP), the Joint Embedding Property (JEP), and the Amalgamation
Property (AP), there is a unique structure, called the Fraissé limit, whose age is the given
one and which is ultrahomogeneous. In [13] it was shown how to construct a Fraissé limit
from computable witnesses for (HP), (JEP), and (AP). In Lemma 4.17, Proposition 4.20,
and Proposition 4.25 we show that such witnesses are always computable from the embedding
information. Putting this together, we obtain the following result.

» Corollary (Corollary 5.5). Suppose K is a computable age with (HP), (JEP), and (AP).
Then K has an EI(K)-computable Fraissé limit.

While Fraissé limits are the most common type of limit of an age, often we have ages
which satisfy (HP) and (JEP), but which do not satisfy (AP), and instead merely satisfy
the weaker notion of the Cofinal Amalgamation Property (CAP). In this case the age
still has a type of limit, called the cofinal Fraissé limit, but the limiting object no longer
need be ultrahomogeneous and is merely required to satisfy the weaker notion of cofinal
ultrahomogeneity.

As with the case of Fraissé limits, we show that from computable witnesses for (HP),
(JEP), and (CAP), we can construct the cofinal Fraissé limit. We frame this result in terms
of (relativized) computable versions of the corresponding properties. (For example, (s-cHP)
denotes the s-computable version of (HP).)



» Theorem (Theorem 5.19). Let s be a Turing degree. Suppose
(a) K is an s-computable age,
(b) EIK) <t s, and
(¢) K has (s-cHP), (s-cJEP), and (s-cCAP).

Then there is an s-computable cofinal Fraissé limit of K.

With this result in hand, we reduce the problem of computing the cofinal Fraissé limit
from an age to the problem of computing witnesses to (CAP) from an age (as we have already
shown that witnesses to (HP) and (JEP) are computable from the embedding information).
We are able to show the following upper bounds on the computability of (CAP) and of cofinal
Fraissé limits.

» Theorem (Theorem 4.36 (b)). IfK is a computable age with (CAP), then it has (EI(K)"-cCAP).

» Corollary (Corollary 5.20). Suppose K is a computable age with (HP), (JEP), and (CAP).
Then K has an EI(K)" -computable cofinal Fraissé limit.

We then turn our attention to the question of lower bounds for the computability of
(CAP). We consider two situations, one where the language is finite and relational (and
hence the embedding information is computable), and one where we allow the language
to be infinite and to have function symbols. We obtain the following lower bound on the
computability of (CAP) for finite relational languages.

» Theorem (Theorem 6.1). There is a computable age K, which is the canonical computable
age of some structure in a finite relational language, such that K has (CAP) but if it has
(s-cCAP) for some Turing degree s, then 0" <t s.

We also obtain the corresponding lower bound on the computability of cofinal Fraissé
limits for finite relational languages.

» Corollary (Corollary 6.2). There is a computable age K, which is the canonical computable
age of some structure in a finite relational language, such that if s is a Turing degree and M
is an s-computable structure that is s-computably cofinally ultrahomogeneous and a cofinal
Fraissé limit of K, then 0’ <t s.

Finally, in the general case, we obtain lower bounds on the computability of (CAP) and
of cofinal Fraissé limits.

» Theorem (Theorem 6.3). There is a computable age K, which is the canonical computable
age of some structure, such that K has (CAP) but if it has (s-cCAP) for some Turing degree
5, then 0 <t s.

» Corollary (Corollary 6.4). There is a computable age K, which is the canonical computable
age of some structure, such that if s is a Turing degree and M is an s-computable structure
that is s-computably cofinally ultrahomogeneous and a cofinal Fraissé limit of K, then 0" <t s.

3 Basic Model Theory and Notation

Throughout this paper £ will be a (not necessarily relational) language. All relation symbols
will have positive arity, but we will allow function symbols to have arity 0 (and we will treat
0-ary function symbols as constant symbols). If A and B are L-structures, we write A C B
to denote the fact that A is a substructure of B. For a finite sequence a and a set A, we
write a C A to mean that each element of a is in A. When A is the underlying set of a



structure A we will use the standard model theory notation of writing a € A for a C A. We
use the term substructure in the standard model-theoretic sense, i.e., to mean an induced
substructure that preserves whether or not each relation holds.

By an L-tuple we will mean a pair (a,.A) where A is an L-structure and a € A. We will
often abuse notation and refer to an L-tuple (a,.4) by a when the background structure A
is clear. If P is a property of sequences we say that P holds of an L-tuple (a,.A) when it
holds of a. (For example, the length of (a,.A) is the length of a.)

If M is a structure and A is a finite subset of M, we define cly((A4) to be the smallest
substructure of M that contains A (i.e., the closure of A under all £-terms). Suppose (a, M)
and (b,N) are L-tuples of the same length; we say (a, M) ~ (b, ) if for every atomic
formula 7 in the empty language, M = v (a) if and only if A = «(b). This is equivalent
to saying that whenever two coordinates of a are equal (or not equal) the corresponding
coordinates of b are equal (or not equal, respectively).

We say (a, M) ~ (b, N) if for every atomic formula ¢, we have M |= p(a) if and only if
N = ¢(b). Note that this is equivalent to the statement that the map taking the tuple a to
b can be extended to an isomorphism between cla(a) and clpys(b). In this context we refer
to this isomorphism by t.(a,b).

Note that if a € M with Mg a substructure of M and b € Ny with Ny a substructure
of NV, then (a, My) ~ (b, Np) if and only if (a, M) ~ (b, N'). We will therefore often refer
to this relationship simply as a ~ b (and similarly for a ~ b).

We say a collection of L-structures K is uniformly finite if £ is a finite language and
there is a computable function f: w — w such that for all M € K and a € M, we have
lclavm(a)] < f(la]). We say that M is uniformly finite if {M} is uniformly finite.

We write 0" for the Turing jump of the minimal Turing degree, 0. We write a <t b to
denote that the Turing degree a is Turing reducible to the Turing degree b. Fix a standard
enumeration of Turing machines and let {e}(n) be the result of running the eth Turing
machine on input n € w. We write {e}(n)] when this computation halts, and {e}(n)?1 when
it does not halt.

If o is a sequence and a is an element, we write 0" a to be the sequence obtained by
appending a to the end of o. If ¢ and 7 are sequences, a map f: ¢ — 7 is a function which
takes as input a pair (a, i) where a = (i), and returns as output a pair (b, j) where b = 7(j).

If f is a function which outputs k-sequences we write f(x) = (fo(x),..., fr—1(z)), so
that each f; is a function that outputs the ith element of the tuple on a given input. For an
arbitrary function f: X — Y and a subset Xy C Y, we let f“(X) denote the image of Xg
under f, ie., {f(z) : © € Xo}. We will often work with sequences of tuples, and will write,
e.g., (a;, b;)ic, to mean the sequence of pairs ((ai, bi))ieu'

Throughout this paper, we use standard notation from computable model theory for
computable representations of structures; for details, see Appendix A.

4 Computable Ages

4.1 Basic Definitions of Computable Ages

We now introduce the notion of a computable age.

» Definition 4.1. An age for L is a collection of finitely generated structures closed under
isomorphism.

If L is a language with a computable representation, a computable representation of
an age K is a computable sequence K = (a, A, 1);c., where



for each (a, A,i) € K, we have that (I) (a,A) is an L-tuple such that A = cla(a);
(IT) A is a computable L-structure (with respect to the computable representation of
L); and (III) A € K; and

for every B € K there is an (a, A, i) € K such that B> A.

We will refer to a computable representation of an age as a computable age. We will
omit mention of IC when it is clear from context.

If K is a computable age and i € w, we write (ak.;, Ak.;) to denote the unique L-tuple
such that (ak.;, Ak, 1) € K, and define Ix (i) = (ak.;, Ak.i,7). We omit the subscript K from
Ix when it is clear from context. We will abuse notation and write A € K if A = Ag.; for
some i € w. Similarly we write (a, A) € K if (a, A) = (ak., Ax:i) for some i € w.

» Definition 4.2. A potential embedding in K is a triple of the form (1(i),1(j), c) where
i,j €w and c € Ag.;. We write Ey;y.cai) = (1(4),1(j), ). Define the domain of Ey(;y.ca())
to be dom(Eyg).c(j)) = 1(@), the codomain to be codom(Ey;).c.(;)) = 1(j) and the range
of Ey(iy.ca(j) to be range(EH(i):C:H(j)) = c. In diagrams we will write A —:K B to signify that
(A, B,c) is a potential embedding in K.

A potential embedding (1(3),1(j),c) in K is an embedding if a; ~ c¢. We will write
A Sk B to signify that (A, B,c) is an embedding in K.

Note that the collection of potential embeddings is a computable set. However, the
collection of embedding is, in general, only co-c.e. For this reason it will be important to use
potential embeddings when building a cofinally homogeneous structure from its age.

» Definition 4.3. Let F' and G be potential embeddings in K and suppose Codom( ) =
dom(G). When G is not an embedding, we define Go F = (dom(F),codom ), range(G )
When G is an embedding, we define GoF = (dom(F), codom(G), ta(a;, range(G))(range(F))
where j € w is such that 1(j) = dom(G). We write idy;y to denote the triple (I(i),1(i),a;).

)

One can check that this notation gives rise to a category €at(K) whose objects are
elements of K, and where the maps between A and B are those potential embeddings F' with
dom(F) = A and codom(F) = B.

The following defines an important set associated to any pair of computable ages, as it
will let us tell when potential embeddings between substructures of the two ages are in fact
embeddings.

» Definition 4.4. Suppose K is a computable age. Define the embedding information
related to K, denoted EI(K), to be the collection of tuples (Ix(ko), bo, Ik (k1),b1) such that
by € Ak.k, and by € Ag.x,, and by ~ b;.

We will see that, given two computable cofinally homogeneous structures that are
isomorphic, one can always extend any partial isomorphism (between appropriate elements
of the age) to an isomorphism. However, in order to build a computable such isomorphism,
we will need to be able to computably extend various partial isomorphisms; we will use the
embedding information to do so.

» Lemma 4.5. IfK is a computable age, then EI(K) <t 0'. Further, if K is a uniformly
finite computable age, then EI(K) is computable.

Proof. The atomic diagram of the closure of a tuple is c.e., and therefore it is c.e. to determine
when a map does not extend to a partial embedding, establishing the first claim. The second
claim is immediate from the definition. |



» Definition 4.6. Let Ky and K; be computable ages, and let s be a Turing degree. Define
an isomorphism from Ky to K; to be a pair of maps a = (ag, 1) such that
ag: Kg = Ky and aq: Ky — Ko,
for all (a, A,i) € Ky with ap(a, A,i) = (b,B,j) we have a ~ b, and
for all (b, B,j) € Ky with a1(b,B,j) = (a,A,1) we have a ~ b.
The pair o is s-computable when the maps of: w — w and of : w — w that satisfy
ao(Ix, () = Ik, (o (7)) fori € w and
a1 (I, (5)) = Iy (0} () for i € w
are s-computable.
We say that Ky and Ky are s-computably isomorphic when there is some s-computable
isomorphism between them. When s =0 we say that they are computably isomorphic.
Define a=! = (a1, ap). Note that @~ is an isomorphism from Ky to Ko.

Note that two computable ages Ky and K; are isomorphic if and only if they are both
computable representations of the same age, which holds if and only if for some Turing degree
s they are s-isomorphic.

» Remark 4.7. When ¢ and j are clear from context we will abuse notation and write a(.A)
or ap(a,.A) to mean ag(a, A, i), and ay(B) or ay(b,B) to mean ay(b,B,j). Likewise, for
d € A and (a, A,i) € Ko we will write ap(d,a) to mean the pair (ta(a, ag(a))(d), ao(a)),
and for d € B and (b, B, j) € Ky we will write a1 (d,b) to mean (tq(a, ay(b))(d), ai(b)).

We now define how to apply an isomorphism to a potential embedding.

» Definition 4.8. Let Kg and Ky be computable ages and let o = (cvg, 1) be an isomorphism
from Ko to Ky. Suppose Eyg;).caj) s a potential embedding in Ko. Define the application of
a to Eigyci(j) by a(Eigy.ci)) = (co(i)), ao(l(f)), ta(aj, ao(a;))(c)).

» Lemma 4.9. Suppose a = (g, 1) is an isomorphism between computable ages Ko and K.
Then a extends to an equivalence of categories between Cat(Ky) and Cat(Ky) with inverse

equivalence a L.

Proof. 1f Ey(;).c.1(;) is a potential embedding, then a(FEy;).c:1(j)) is also a potential embedding.
Further Ej;.c:1¢j) is an embedding if and only if a(Eyg).c¢5) is. <

Given a computable structure, the collection of its finitely generated substructures,
appropriately enumerated, forms a computable age.

» Definition 4.10. Let M be an L-structure. The age of M 1is the collection of all
L-structures isomorphic to a finitely generated substructure of M.

Suppose M is computable, and let (a;);c, be some computable enumeration of all
finite tuples in M in which every tuple appears infinitely often. We say that the sequence
(a;, clpm(ay), 9)icw s a canonical computable age of M. Let K[M)] be one such canonical
computable age. A computable age K is computably the age of M if it is computably
isomorphic to K[M].

The following basic facts are immediate from the definition.

» Lemma 4.11. Let M be a computable L-structure.

Any two canonical computable ages of M are computably isomorphic.
The canonical computable age of M is computably the age of M.



If K is the age of M, and K is computably the age of M, then K is a computable
representation of K.

Note that the paper [13] refers to the canonical computable age of M as “the canonical
representation of the age of M”, and speaks of “a canonical representation of the age of M”
to mean any computable representation that is computably isomorphic to the canonical one.

» Lemma 4.12. For each i € {0,1}, let M; be a computable structure and suppose that K;
is computably the age of M. If My and My are s-computably isomorphic, then Ko and K;
are s-computably isomorphic as well.

Proof. Suppose f: My — M is an s-computable isomorphism between Mg and M.
It suffices to show that K[M,] is s-computably isomorphic to K[M;]. Let ag: K[Mo] —
K[M;] be the map where ag(a,A,i) = (f(a),clym, (f(a)), ), where j is the first index
such that (f(a),cla, (f(a)),4) € K[M;y]. Similarly, let a;: K[M;] — K[My] be the
map defined by a;(a, A,i) = (f~1(a),clm,(f~1(a)), ), where j is the first index such
that (f~1(a),clpm, (f71(a)),7) € K[My]. Clearly (ag, ) is the desired isomorphism of
computable ages. |

The next definition will be important for constructing an infinite structure given an age.
» Definition 4.13. If M is a computable structure we write EI(M) to mean EIK[M]).

The following result will allow us to convert a computable sequence of compatible
embeddings into a structure. Its proof is immediate from well-known results (see, e.g., [13,
Lemma 2.9]). For completeness, we include a proof in Appendix B.

» Proposition 4.14. Let K be a computable age and suppose (F;)ic, is a computable
sequence of embeddings where for each i € w there is a k; € w such that dom(F;) = Ix(k;)
and codom(F;) = Ig(kit1)-

Then there is a computable age K* which is computably isomorphic to K, and a computable

sequence (Ix(€;))icw such that for i € w, we have ag=.y, ~ ag., and Agx.p, C Ag=.¢ and

i1
ta(ak:kiy > AR*20,4, ) © ta(ar,, range(F})) = ta(ag,, ax-.e, ).

» Corollary 4.15. Let K be a computable age and suppose (F;)icw are as in Proposition 4.14.
Then there is a structure D, along with embeddings G;: Axg.x, — D (for i € w) such that
for any i < j, we have G; = Gjo F;_10Fj_g0---0F;. Further, both D,, and (Gp)new are
computable.

Proof. Apply Proposition 4.14, and let D, = |, ¢, Ak~ Then the following diagram
commutes, where G; is tq(ag,, ak«.y, ) for i € w.

i

FO Fl

ARk ARk,

Observe that D, is the union of a computable sequence of computable structures, hence is
computable. <



4.2 Properties of Computable Ages

We now define computable analogues of various properties of ages.

» Definition 4.16. An age K has the hereditary property, written (HP), if for all B € K,
we have A C B implies A € K.

Suppose that s is a Turing degree. We say a computable age K has the s~-computable
hereditary property, written (s-cHP), if there is an s-computable function that takes a
pair (I(i),b) where b € A; and returns some I(j) such that a; ~b. When s is 0, we speak
of the computable hereditary property, and write (cHP).

We have the following bound.
» Lemma 4.17. Suppose K is a computable age with (HP). Then K has (€I(K)-cHP).

Proof. Given (I(z), b) with b € (A;,a;), use EJ(K) to search for I(j) such that a; >~ b. <

Not every computable age with (HP) has (cHP), but every computable age with (HP) is
isomorphic to one with (cHP), as shown in [13]; we include a proof for completeness.

» Proposition 4.18 ([13, Theorem 2.8]). Suppose K is a computable age with (HP). Then
there is a computable age K* with (cHP) that is isomorphic to K.

Proof. We obtain K* from K by enumerating all the structures generated by finite tuples in
structures in K. Because K has (HP), it is clear that K and K* represent the same age and
hence are isomorphic. |

» Definition 4.19. An age K has the joint embedding property, written (JEP), if for
all A, B € K there is a C € K for which there are embeddings aq: A — C and ag: B — C.

Suppose s is a Turing degree. We say a computable age K has the s-computable
joint embedding property, written (s-cJEP), if there is an s-computable function f
with domain K x K such that for all 1(4y),1(¢1) € K, we have f(I(¢y),1(¢1)) = (Fp, F1)
where (i) Fy and Fy are embeddings; (i) dom(Fp) = 1(4y) and dom(Fy) = 1(¢1); and (iii)
codom(Fy) = codom(Fy). When s is 0, we speak of the computable joint embedding
property, and write (cJEP).

» Proposition 4.20. Suppose K is a computable age with (JEP). ThenK also has (EJ(K)-cJEP).

Proof. Given I(7) and I(j), search through structures A4y € K and finite tuples in Ay until
one finds an ¢ and tuples b;,b; € A; such that b; ~ a; and b; ~ a;. <

The following two results are due to [13].

» Proposition 4.21 ([13, Lemma 2.6]). If M is a computable structure then K[M] has (cHP)
and (cJEP).

» Proposition 4.22 ([13, Theorem 2.10]). If K is a computable age with (cHP) and (cJEP),
then it is canonically the age of some computable structure.

Next we introduce some technical notions which will be important in the definitions
of amalgamation properties. Key among these is a span, which serves as the “base” of an
amalgamation diagram.
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» Definition 4.23. A potential span in a computable age K is a pair (Fy, Fy) of potential
embeddings with dom(Fy) = dom(F}y). We say that a potential span (Fy, Fy) is over dom(Fp).
A potential span is a span if in addition, Fy and Fy are both embeddings.
An amalgamation diagram over a potential span (Fy, Fy) is a tuple (Go, G1) such that

Gy is an embedding and G is a potential embedding,

dom(G;) = codom(F;) fori e {0,1},

codom(Gp) = codom(Gy), and

if (Fo, F1) is a span then G1 is an embedding and Go o Fy = G1 o F}.

When (Fy, Fy) is a span, the follow diagram must commute.

Note that it is computable to check whether or not a tuple is a potential span, but it
need not be computable to check whether or not a tuple is a span. Similarly, it need not be
computable to check whether a tuple is an amalgamation diagram over a potential span.

» Definition 4.24. An age K has the amalgamation property, written (AP), if whenever
A, B,C € K and whenever fg: A — B and fc: A — C are embeddings, there is a D € K such
that there are embeddings ap: B — D and ac: C — D where ago fg =aco fa.

Suppose s is a Turing degree. We say a computable age K has the s-computable
amalgamation property, written (s-cAP), if there is an s-computable function which maps
each potential span to an amalgamation diagram over it.

The proof of the next result can be found in Appendix B.
» Proposition 4.25. Suppose K is a computable age with (AP). Then K has (EI(K)-cAP).

The focus of this paper is a weakening of the amalgamation property, known as the cofinal
amalgamation property; we will see that this is computationally more complicated than the
amalgamation property.

» Definition 4.26. Suppose K is a computable age. A collection of distinguished
extensions, written DEg, is a collection of embeddings such that
for F € DEg we have dom(F), codom(F') € K,
for ' € DEg and isomorphisms G with codom(G) = dom(F) and dom(G) € K we
have F o G € DEg,
for F € DEx and isomorphisms H with dom(H) = codom(F') and codom(H) € K we
have H o F' € DEk,
for all1(i) € K there is an F € DEg with dom(F') = 1(7).
Such a collection DEg is said to be s-computable when it is s-computable as a set.

» Definition 4.27. Suppose o = (ap, aq): Ko — Ky is a computable isomorphism and DEg,
is a collection of distinguished extensions in Ko. Let a(DEg,) be the collection of embeddings
F in €at(Ky) such that = !(F) € DEk,.

» Lemma 4.28. Suppose a = (ap, 1) : Ko — Ky s a computable isomorphism and DEg, is
a computable collection of distinguished extensions in Ko. Then a(DEk,) is a computable
collection of distinguished extensions in K.
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Proof. DEg, is closed under both pre- and post-compositions of isomorphisms, and so the
result follows |

» Definition 4.29. An age K has the cofinal amalgamation property, written (CAP), if
for every A € K there is an A’ € K such that
there is an embedding B: A — A’ and
whenever B,C € K and fg: A" — B and fc: A" — C are embeddings, there is a D € K
and there are embeddings ag: B — D and ac: C — D where ag o fg = ac o fe.
We call such an A’ an amalgamation base.

» Definition 4.30. Suppose K is a computable age. We define a witness to (CAP) to be a
pair (ABk, fapy) satisfying the following.

(a) ABk is a collection of distinguished embeddings such that if F' € ABg, then codom(F)
is an amalgamation base, and
(b) fapx takes as input tuples (F,Go,G1) such that (i) F € ABg, (#) (Go,G1) is
a potential span, and (iii) dom(Gy) = dom(Gy) = codom(F), and outputs an
amalgamation diagram over (Go, G1).
Such a witness is said to be s-computable if ABg is s-c.e. and fap, is an s-computable
partial function. We say that K has (s-cCAP) if it has an s-computable witness to (CAP).

» Definition 4.31. Let o = (ap,1): Ko — Ky and suppose (ABk,, faBy,) is a witness to
(CAP) for Ko. Let a(fany,) be the map which takes as input those tuples (F,Go,G1) such
that (i) F € a(ABg,), (i) (Go, G1) is a potential span in Ky, and (iii) dom(Go) = dom(G1) =
codom(F), and outputs (a(Ho),a(H1)) where (Ho, H) = fapg, (@ ' (F), a1 (Go), o 1(GY)).

» Lemma 4.32. Let a = (ag,a1): Ko — Ky be a computable isomorphism, and suppose that
(ABk,, faBy,) is a witness to (CAP) for Ko which is computable. Then (a(ABg,), a(faBy,))
is a witness to (CAP) for Ky which is computable.

Proof. By Lemma 4.28, the set a(ABg,) is a collection of distinguished extensions.
Definition 4.30 (a) holds, as being an amalgamation base is closed under isomorphism
of computable ages. Definition 4.30 (b) holds, as being an amalgamation of a potential span
is closed under isomorphisms of computable ages. Finally, (¢(ABk,), @(fap, )) is computable
because it can be computed from (ABg,, fas,, ) and e, both of which are computable. <

The following corollary is immediate.

» Corollary 4.33. Let s be a Turing degree, and suppose Ko has (s-cCAP) and Ky is
computably isomorphic to Ko. Then K; has (s-cCAP).

» Proposition 4.34. The following are equivalent for a computable age K.

K has (CAP).

K has (s-cCAP) for some Turing degree s.
Proof. Note that any witness to (CAP) can be encoded by a single real. The computable age
K has (CAP) if and only if there is some witness to (CAP) for K, which then has (s-cCAP)
where s is the Turing degree of the real encoding the witness. <

» Lemma 4.35. If an age has (AP), then it also has (CAP), If a computable age has (cAP),
then it also has (cCAP).
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Proof. This follows since in an age with (AP), every element is an amalgamation base. |

Earlier we saw how to obtain bounds on the computational power needed for the effective
versions of each of (HP), (JEP), and (AP). We now do analogously with (CAP), but the
the bounds are higher. The proof of this technical but important result is in Appendix B.

» Theorem 4.36. Let K be a computable age, and let AB be the collection of amalgamation
bases in K. Then (a) AB <t €J(K)", and (b) when K has (CAP), it has (€I(K)"-cCAP).

5 Upper Bounds

5.1 Ultrahomogeneous Structures

» Definition 5.1. A structure M is ultrahomogeneous if for every finitely generated
structure A C M and every isomorphism f: A — A* with A* C M there is an automorphism
g: M — M such that g[ 4= f.

The structure M is a Fraissé limit of K if the age of M is K and M is ultrahomogeneous.

» Definition 5.2. A computable structure M is computably ultrahomogeneous if there
is a function g which takes in pairs of finite tuples (a,b) of equal length from M and returns
a code for some bijection of the underlying set of M with itself, such that if ta(a,b) is
an isomorphism from cly(a) to cly(b), then g(a,b) is an automorphism of M extending
ta(a,b). We call such a map g a witness to the computable ultrahomogeneity of M.

The structure M is a computable Fraissé limit of K if M is computably ultrahomogeneous
and K is a computable representation of the age of M.

Note that the paper [13] defines a notion of “computable homogeneity” where instead of
taking in two ~-equivalent tuples and returning an automorphism it takes in two ~-equivalent
tuples a, b and an extra point « and returns a new point y such that ay ~ bx. Note that their
notion of computable homogeneity is equivalent to our notion of computable ultrahomogeneity
via a standard back-and-forth construction of an automorphism from one-point extension
axioms.

Our next result, Proposition 5.3, is a strengthening of one direction of [13, Theorem 3.9];
for a proof, see Appendix C.

» Proposition 5.3. Suppose M is an arbitrary countable structure with s-computable domain
which is s-computably ultrahomogeneous. Then K[M] has (s-cAP).

The other direction of [13, Theorem 3.9] is equivalent to the following result.

» Proposition 5.4 ([13, Theorem 3.9]). Suppose K is a computable age that has (cHP),
(cJEP), and (cAP). Then K has a computable Fraissé limit.

Putting the above together, we have the following.

» Corollary 5.5. Suppose K is a computable age with (HP), (JEP), and (AP). Then K has
an EI(K)-computable Fraissé limit.

Proof. This is immediate from Lemma 4.17 and Propositions 4.20, 4.25, and 5.4. |

The next result uses a standard back-and-forth construction to build the appropriate
automorphism; for a proof, see Appendix C.

» Proposition 5.6. Let M be a computable structure, and suppose M is ultrahomogeneous.
Then M is EI(M)-computably ultrahomogeneous.
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5.2 Cofinally Ultrahomogeneous Structures

» Definition 5.7. Suppose M is a computable structure. We say that E is a cofinal
collection (in M) if the following hold.

E is a collection of finite tuples in M.

For every finite tuple a in M there is some b € E such that a C cly(b).

Ifb e E and if a C clp(b) is a finite tuple, then ab € E.

For all finite tuplesa andb in M, ifa € E anda ~b, thenb € E.

» Definition 5.8. A structure M is cofinally ultrahomogeneous if for every finite
set A C M there exists some finitely generated B C M with A C B such that whenever
f: B — B* is an isomorphism with B* C M then there is an automorphism f*: M — M
such that f* = f.

The following is an example from [15] of a cofinally ultrahomogeneous structure which
is not ultrahomogeneous. For more details on this example as an instance of cofinal
amalgamation, see [29, Example 3.1.9].

» Example 5.9. Let Z = (G, E) be the unique (up to isomorphism) infinite undirected
irreflexive graph with a single connected component such that every element has degree 2,
i.e., Z consists of a single Z-chain. For distinct a, b, c € Z we say that c is between a and b
if there is a cg, ..., cp—1 such that (a,co), (co,c1),...,(ca—1,0) € E and ¢ € {¢;}icpn—1). We
also say that a and b are distance n + 1 apart if the collection of elements between a and b
has size n.

Note that Z is not ultrahomogeneous, as whenever ag, a1, by, b1 € Z are such that neither
pair (ap,a1) nor (bg,b;) has an edge, then these pairs have the same quantifier-free type,
even when the distance between ag and aq is different than the distance between by and b .

Call a subset A of Z closed if whenever a,b € A are distinct and ¢ is between a and b then
c € A. Note that given any two finite closed sets of the same size, there is an automorphism
of Z taking one to the other. Also note that every finite set of elements is contained in a
finite closed set. Therefore Z is cofinally ultrahomogeneous. 2

» Definition 5.10. Let M be a computable structure and suppose E is an s-computable
cofinal collection in M. We say that M is s-computably cofinally ultrahomogeneous
(with respect to E) if there is an s-computable g such that

dom(g) is the collection of pairs (a,b) of tuples in M where a € E and a ~ b,

if (a,b) € dom(g), then g(a,b) is the index of a computable bijection gap: M — M,

where (i) gap(a) =b; and (ii) if a ~ b then gap is an automorphism of M.

For proofs of the next four propositions, see Appendix C.

» Proposition 5.11. Let M be a computable structure. The following are equivalent.
(a) M is cofinally ultrahomogeneous.
(b) There is some Turing degree s such that M is s-computably cofinally ultrahomogeneous.

» Proposition 5.12. Let M be a cofinally ultrahomogeneous structure with respect to some
cofinal collection E. If a € E, then the substructure clp(a) is an amalgamation base in

K[M].

» Proposition 5.13. Let M be a cofinally ultrahomogeneous structure. Let Ag, A1 C M be
amalgamation bases in the age of M and suppose k: Ay — Ay is an isomorphism. Then
there is an automorphism g: M — M such that g[a,= k.
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» Proposition 5.14. Let s be a Turing degree, and let M be an s-computable structure that
is s-computably cofinally ultrahomogeneous. If EJ(M) <t s then K[M] has (s-cCAP).

We already knew, by Proposition 4.21, that for any s-computable s-cofinally ultra-
homogeneous structure M, its canonical s-computable age K[M] has (s-cHP) and (s-cJEP).
Proposition 5.14 shows that it also has (s-cCAP) if EJ(M) <t s.

» Definition 5.15. Let s be a Turing degree, and suppose E is a cofinal collection. An
s-computable structure M has the s-computable cofinal extension property (with
respect to E) if there is an s-computable partial function p which takes tuples (a,b,c) with
(i) a,b,c € M, (ii) a,c € E, (iii) a C clp(c), and (iv) a ~ b, and which returns a
tuple d where ac ~ bd and whenever a ~ b, then (I) d ~ ¢, (II) b € clp(d), and
(III) tcl(d,c) [bz tcl(b,a).

The following result, whose proof is in Appendix C, describes an important relationship
between the computable cofinal extension property and computable cofinal ultrahomogeneity.
The proof that (a) implies (b) is immediate and the proof that (b) implies (a) simply uses
the cofinal extension property to build an automorphism extending any isomorphism of
elements in E. This is a straightforward generalization of the proof that a structure is
ultrahomogeneous if and only if its age has the 1-point extension property.

» Proposition 5.16. Let s be a Turing degree, and let M be an s-computable structure.
Suppose that EI(M) <t s and let E be an s-computable collection of cofinal pairs. The
following are equivalent.

(a) M is s-computably cofinally ultrahomogeneous with respect to E.

(b) M has the s-computable cofinal extension property with respect to E.

» Definition 5.17. Suppose K is an age in L. A countable L-structure M is a cofinal
Fraissé limit of I if M is cofinally ultrahomogeneous and the age of M is K.

» Definition 5.18. Suppose K is a computable age. An s-computable structure M is an
s-computable cofinal Fraissé limit if M is s-computably cofinally ultrahomogeneous and K is
an s-computable representation of the age of M.

In Appendix C, we prove the next result under a mild technical assumption, which we
describe in the first paragraphs of the proof. (It is straightforward to generalize this to a
proof of the full result, but this requires additional bookkeeping using Proposition 4.14.)

» Theorem 5.19. Let s be a Turing degree. Suppose
(a) K is an s-computable age,
(b) EI(K) <t s, and
(¢) K has (s-cHP), (s-cJEP), and (s-cCAP).
Then there is an s-computable cofinal Fraissé limit of K.
Putting several ingredients together, we have the following corollary.

» Corollary 5.20. Suppose K is a computable age with (HP), (JEP), and (CAP). Then K
has an EI(K)"-computable cofinal Fraissé limit.

Proof. This is immediate from Lemma 4.17, Proposition 4.20, Theorem 4.36, and
Theorem 5.19. <

Finally, we have the following result, whose proof is in Appendix C.

» Theorem 5.21. Suppose M is a cofinally ultrahomogeneous structure. Then M is
EI(M)" -computably cofinally ultrahomogeneous.
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6 Lower Bounds

To conclude the paper, we give two main lower bound results, Theorem 6.1 (for finite relational
languages) and Theorem 6.3 (for countable languages which may be infinite or include function
symbols), and an associated corollary for each in combination with Proposition 5.14. The
proofs of the results in this section are very technical; as such, we provide a detailed proof
outline before each proof in the appendix.

6.1 Finite Relational Languages

» Theorem 6.1. There is a computable age K, which is the canonical computable age of
some structure in a finite relational language, such that K has (CAP) but if it has (s-cCAP)
for some Turing degree s, then 0’ <r 5.

For the detailed proof outline followed by the full proof, see Appendix D.

» Corollary 6.2. There is a computable age K, which is the canonical computable age of
some structure in a finite relational language, such that if s is a Turing degree and M is an
s-computable structure that is s-computably cofinally ultrahomogeneous and a cofinal Fraissé
limit of K, then 0’ < s.

Proof. This follows immediately from Theorem 6.1 and Proposition 5.14. <

6.2 Arbitrary Countable Languages

» Theorem 6.3. There is an computable age K, which is the canonical computable age of
some structure, such that K has (CAP) but if it has (s-cCAP) for some Turing degree s, then
0" ST 5.

For the detailed proof outline followed by the full proof, again see Appendix D.

» Corollary 6.4. There is a computable age K, which is the canonical computable age of
some structure, such that if s is a Turing degree and M is an s-computable structure that is
s-computably cofinally ultrahomogeneous and a cofinal Fraissé limit of K, then 0" <t s.

Proof. This follows immediately from Theorem 6.3 and Proposition 5.14. <
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Appendix
A  Computable Representations

We recall the definition of a computable representation of a language and a computable
representation of a structure.

» Definition A.1. Let L be a countable language. A computable representation of L is
a pair of maps (Relg, Funct,) where
Relg is a bijection from a computable subset R of w to the set of relation symbols in
L,
Funct, is a bijection from a computable subset F' of w to the set of function symbols
in L,
R and F' are disjoint, and
the map ary which takes an element of RU F and returns the arity of the relation
symbol or function symbol is computable.

» Definition A.2. Let L be a countable language with computable representation (Relz, Funct,)
and let M be an L-structure. A computable representation of M is a bijection 14 from
a c.e. subset M of w to the underlying set of M such that the following three sets are each
c.e.:

{(n,a) : n € dom(Relz), a € M, and M = Relz(n)(tm(a))}

{(n,a) : n € dom(Relz), a € M, and M = —Relz(n)(trm(a))}
{(f,a,b) : f € dom(Functz), a € M, and M = Functz(f)(em(a)) = em(b)}

We say that an L-structure M is computably enumerable (c.c.) if the underlying set of
M is a c.e. subset of w and the identity map on this set is a computable representation of
M. We say M is computable if the underlying subset of w is a computable subset.

The following is a standard result of computable model theory which shows that there is
little difference between computable and c.e. L-structures.

» Lemma A.3. Uniformly in the index for a computable representation of a structure M
one can compute a computable representation of M whose underlying set is a coinfinite
computable subset of w, along with an index for the underlying set of the new representation
(as a computable subset of w).

B Proofs of Results from Section 4

» Proposition 4.14. Let K be a computable age and suppose (F;)ic, is a computable
sequence of embeddings where for each i € w there is a k; € w such that dom(F;) = Ix(k;)
and codom(F;) = Ig(kit1).

Then there is a computable age K* which is computably isomorphic to K, and a computable
sequence (Ix(4;))icw such that for i € w, we have ag«., ~ ag.r, and Ag-.p, C Ag-., ., and

ter(aKk, 1> 8k 0, 4, ) © ta(ak,, range(F;)) = ta(ag,, ax-., ).

Proof. First fori < j € wlet F; j; = FjoF;_j0---0F;1;0F;. We build a sequence (d;, D;)icw
of structures such that for all ¢ € w, we have d; € D; C D;14, and d; ~ ak.x,, and also
tea(ag:k,,,, dig1) o ta(ag,, ci) = ta(ag,,d;). We do this by simultaneously enumerating all
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the elements Ag., for m € w. When a new element x appears in an Ag.,,, we first check
to see if there is some 7 < m such that z is the image under F;,, of some element which
already has been enumerated. If it is, then we do nothing. If it is not, then we check to see
if there is some j7 > m such that the image of x under F;, ; is some element y which has
already been enumerated. If so, then we add y to D,, and do nothing with x. If neither of
these holds, then we add = to D,,.

Given a tuple £ in some D,,,, there must be some j such that each element of & is in one
of {Ak:k, }se[;]- We can then use this fact along with the maps F ; for s,t € [j] to determine
which literals hold of z.

It is then clear that d,, ~ Ak.,, for all m € w. Therefore we can find a computable age
K* which contains K along with (d;, D;)ie., and which further contains these collections in
such a way that ensures that K and K* are computably isomorphic. |

» Proposition 4.25. Suppose K is a computable age with (AP). Then K has (EJ(K)-cAP).

Proof. We describe an algorithm which uses £J(K) to map a potential span (Fp, F1) to an
amalgamation diagram over it.

Step 1:
Use E€J(K) to check whether each of Fj and Fj is an embedding.

Step 2, Case a: at least one of Fyy or F} is not an embedding

Let i be such that I(i) = codom(Fp). Let I = (I(:),1(¢), a;) be the identity map on I(z). Let
G = (codom(Fy),1(i),a;). Output the pair (G,T), which is an amalgamation diagram over
(Fy, F1).

Step 2, Case b: both Fy and F; are embeddings
Use €J(K) to search for a pair (Go, G1) which is an amalgamation diagram over (Fy, Fy).

Because K satisfies (AP) we will always find such an amalgamation diagram. Output the
pair (G, G1). <

» Theorem 4.36. Let K be a computable age, and let AB be the collection of amalgamation
bases in K. Then (a) AB <t €J(K)", and (b) when K has (CAP), it has (EI(K)"-cCAP).

Proof. We will first define €J(K)”-computable functions hy, hy and hs. Let hi be the
function which takes as input a tuple (F, Go, G1, Ho, H1) where

F,Gy, Gy, Hy, H; are potential embeddings,

codom(F) = dom(Gy) = dom(G1),

codom(Hy) = codom(H,), and

dom(H;) = codom(G;) for i € {0,1},
and which returns 1 as output if both

F' is an embedding and

(Hy, H1) is an amalgamation diagram over (Go, G1),
and returns 0 as output otherwise.

Note that hy is £J(K)-computable as we can determine from EJ(K) whether or not a

potential embedding is an embedding and hence we can also determine from £J(K) whether
or not (Hp, Hy) is an amalgamation diagram over (Go, G1).



20

Let ho be the function which takes as input a triple (F, Gp, G1) of potential embeddings
where codom(F) = dom(Gp) = dom(G1), and which returns 1 if there exists (Hy, Hy) such
that hq(F,Go,G1, Ho, H1) = 1, and returns 0 otherwise.
Observe that ho holds of a specific potential span (Gg,G1) along with a potential
embedding F' if and only if there is an amalgamation diagram over (G, G1) for which F' is an
embedding into dom(Gy). Note that hy is h-computable and hence is £J(K)'-computable.
Finally, let hs be the function which takes as input a potential embedding F', and which
returns 1 if both
F' is an embedding and
ho(F, Go,G1) = 1 whenever (Go, G1) is a potential span with dom(Gp) = dom(G;) =
codom(F),

and returns 0 otherwise.

Observe that hg holds of F' precisely when the codomain of F' is an amalgamation base.
Note that hs is hf-computable and hence is £J(K)"-computable.

To prove (b), note that for any M € K, we have M € AB (i.e., M is an amalgamation
base) precisely when hs(ida) = 1 holds. Hence M is computable from h3, and so AB <t
EI(K)".

To prove (a), let fap be the function which takes as input a tuple (F, Gy, G1) where
F € AB and where (G, G1) is a potential span with dom(Gy) = dom(G;) = codom(F'), and
which uses h; to search for an amalgamation diagram over (Go, G1) and output the first one
it finds. Because AB consists of amalgamation bases, such an amalgamation diagram always
exists, and this function will always converge. Now suppose K has (CAP). Then AB is a
distinguished collection of embeddings and hence (AB, fap) is a witness to (CAP). However
(AB, fap) is hz-computable and hence J(K)”-computable. Therefore K has (£J(K)"-cCAP).

<

C Proofs of Results from Section 5

» Proposition 5.3. Suppose M is an arbitrary countable structure with s-computable domain
which is s-computably ultrahomogeneous. Then K[M)] has (s-cAP).

Proof. Let g be a witness to the s-computable ultrahomogeneity of M. Suppose (Fy, Fy) is
a potential span over I(i), and suppose hg = g(a;, range(Fp)) and hy = g(a;, range(Fy)). Let
Gy be the inclusion map from codom(Fy) to codom(Fy) U hohy *(codom(F})) and let Gy be
the map hoh; ' composed with the inclusion into codom(Gy).

It is immediate that G is an embedding. Further, G; is an embedding if F is. Therefore
(Go, G1) is an amalgamation diagram over (Fy, F1). The maps Go and G are each computable
from the two maps hg and hq, which are themselves each computable from (Fp, Fy) and g.
Therefore K[M] has (s-cAP). <

» Proposition 5.6. Let M be a computable structure, and suppose M is ultrahomogeneous.
Then M is EJ(M)-computably ultrahomogeneous.

Proof. Let (x;)ie, be an enumeration (possibly with repetitions) of M. Let a,b € M be
tuples with a ~ b.
First £J(M)-computably check whether or not a ~ b.
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Trivial Case:
If a % b, then let ga p be any bijection extending the map which takes the underlying set of
a to the underlying set of b in a way that g, nb(a) = b. Note that we can always find such a
map as a ~ b.

Non-Trivial Case:
If a ~ b we define the isomorphism g : M — M in stages.

Stage 0:
Let ggb = tcl(avb) ra-

Stage 2k + 1.

If . € range(ggfgb), then let gif“J e gi{“b. Otherwise, let cor be an enumeration of
dom(gi{“b) and let dgi be an enumeration of range(ggf“b). Search for a (39, € w such that
cor" xp,, ~ daop o, We know such a oy exists and hence we can EJ(M)-computably find

one such value. Let gzkb“ = ta(c, s, , dor Tax).
Stage 2k + 2.
If 2 € dom(gzk]jl), then let gik,j'2 = giklj'l. Otherwise, let coiy1 be an enumeration of

dom(gikljl) and let dag11 be an enumeration of range(gikgrl). Search for an asg11 € w such

that copi1”Tg =~ d2k+1Axa2k+1. We know such a agy41 exists as M is ultrahomogeneous.
We can therefore EJ(M)-computably find one such value.

2%+2 _ A A
Let Jab = ter(Cort1" Tan41, dokr1 xanH)-

Let gab = U,c,, 9ap- Clearly gap is uniformly €J(M)-computable in a, b and witnesses the
EJ(M)-ultrahomogeneity of M. <

» Proposition 5.11. Let M be a computable structure. The following are equivalent.

(a) M is cofinally ultrahomogeneous.

(b) There is some Turing degree s such that M is s-computably cofinally ultrahomogeneous.
Proof. The implication from (b) to (a) is immediate.

Suppose (a) holds. Let E be the collection of tuples a in M such that whenever
f:clm(a) = A* is an isomorphism then there is an automorphism of M extending f.

We now define g, for all a, b in M with a € E and a ~ b. Let ¢ be the unique
bijection from the underlying set of a to the underlying set of b such that ¢, p(a) = b; such
a ta,pb must exist as a ~ b.

If a ~ b then let gap be any automorphism of M extending ¢ 1.
If a 2 b then let g, p be any bijection from the underlying set of M to itself extending
ta,b-

Let s be the Turing degree of E U {gap : @ € E and b ~ a}. Then M is s-computably
cofinally ultrahomogeneous and (b) holds. <

» Proposition 5.12. Let M be a cofinally ultrahomogeneous structure with respect to some
cofinal collection E. If a € E, then the substructure clp(a) is an amalgamation base in

K[M].
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Proof. Let a € E and suppose (Go, G1) is a span for which dom(Gyp) = clp(a). We must
show that there is some amalgamation diagram over (G, G1). Note that there are embeddings
Jo: codom(Gy) = M and J;: codom(Gy) = M. Let K; = J; 0 G, for i € {0,1}. Then K
and K are each embeddings of cl(a) into M. Therefore K; o K ' is an isomorphism from
range(Kp) to range(Ky).

Because a € E, there is an automorphism « of M such that « [range(x,)= K1 © Kgl. Let
C = cly(range(J1) U a(range(Jy))). Let I: range(J;) — C be the inclusion map. Then
(avo Jy, I o Jy) is an amalgamation diagram over (G, G1), and so clag(a) is an amalgamation
base. <

» Proposition 5.13. Let M be a cofinally ultrahomogeneous structure. Let Ay, Ay C M be
amalgamation bases in the age of M and suppose k: Ay — A1 is an isomorphism. Then
there is an automorphism g: M — M such that g [ 4,= k.

Proof. For each j € {0,1} let B; D A; be such that any embedding from B, to M can be
extended to some automorphism of M. Because Ay is an amalgamation base there must be
a finitely generated C C M along with embeddings ag: By — C and «;: By — C such that
apla,=a10k.

Then for each j € {0, 1}, the definition of B; tells us that there is an automorphism ; of
M that extends «;. Hence 81 Lo By is an automorphism of M that extends k. <

» Proposition 5.14. Let s be a Turing degree, and let M be an s-computable structure that
is s-computably cofinally ultrahomogeneous. If EJ(M) <t s then K[M] has (s-cCAP).

Proof. Suppose EJ(M) <1 5. We need to construct an s-computable witness to (CAP). Let E
be an s-computable cofinal collection that witnesses the s-computably cofinal ultrahomogeneity
of M. Let ABgaq) be the collection of embeddings between elements of K[M] whose codomain
is isomorphic to an element of E. Note that ABg,) is computable from EJ(M) and E, each
of which is s-computable.

Now let (Go, G1) be a potential span in K[M] and suppose F' € ABg| ) with codom(F) =
dom(Gyp). We will s-computably find an amalgamation diagram (Hy, H1). There are two
cases.

If (Go,G1) is not a span, then let (Hy, H1) be a pair of maps such that dom(Hy) =
codom(Gp) and dom(H;) = codom(G ), and also such that codom(Hy) = codom(H;). Note
that such a pair of maps always exists as K[M] has (JEP). We can therefore s-computably
find such a pair by searching for it using EJ(M).

If (Go,G1) is a span, then let Ip: codom(Gy) — M and I;: codom(G1) — M be
embeddings. Note that such embeddings always exist as Gy and G; are embeddings in
K(M). For i € {0,1} let J; = I, 0 G;. As (Go, G1) is a span and dom(Gy) = dom(G;1) € E
there must be an automorphism a of M which extends J; ' o Jy. Further, as M is s-
computably cofinally ultrahomogeneous, we can s-computably find one such automorphism
a, uniformly in (F, Go, G1). But then (a0 Iy, I1) is an amalgamation diagram over (G, G1).
Let (Hy, Hy) = (a0 Iy, I1).

Let faBy., be the map which takes (F,Go,G1) to (Hy, Hy). Note that fAByuy 18 8-
computable because EJ(M) can be used to determine whether or not (Gg, G1) is a span, and
each of the two cases s-computably finds (Ho, H1). Therefore (ABgaq), faBy ) 15 @ witness
to K[M] having (s-cCAP). <
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» Proposition 5.16. Let s be a Turing degree, and let M be an s-computable structure.
Suppose that EI(M) <1 s and let E be an s-computable collection of cofinal pairs. The
following are equivalent.

(a) M is s-computably cofinally ultrahomogeneous with respect to E.

(b) M has the s-computable cofinal extension property with respect to E.
Proof. Suppose (a) holds, and let i be a function that witnesses the s-computably cofinal
ultrahomogeneity of M with respect to E. Write hap for function encoded by h(a,b).
Suppose a,b,c € M with a,c € E. If a >~ b then h, p is an automorphism of M that takes
a to b. Let p(a,b,c) = hap(c). Then E and p witness that (b) holds. Further, as E and h
are s-computable, p is also s-computable.

Now suppose (b) holds and let p be a function witnessing the s-computable cofinal
extension property for M with respect to E. Let (z;);c. be an s-computable enumeration of
the domain of M. Suppose a,b € M with a € E. We will define by induction a sequence
of functions (hZ,b)nGw and sequences of tuples (a,)ne, and (by,)new. These will be defined
such that for each n € w, the following inductive hypotheses hold.

hyp S o -

a,, is an enumeration of the domain of hg’b.

b, = h} (an).

a,,b, € F when a ~ b.
Base Case: n =20
We let hgyb be the unique bijection from a to b, which must exist because a ~ b. Let ag = a
and by = b. Note that ag € E by hypothesis, and that by € F when a ~ b.

Trivial Case: n >0 and a# b
Let a, = a”(z;);<n. Let A, be any bijection with domain a,, and codomain contained in
M which extends h'}!. Let b, = ha p(@n).

Inductive Case: n = 2k + 1 for some k& > 0 (and not Trivial Case):

If z, € dom(h;b) then let hZIl = hyp. and let a,41 = a, and b,11 = b,. Now suppose
T & dom(hgjb). Let ay,; € E be the first (relative to the s-computable enumeration of E)
tuple such that a, "z € cl(aj, ). Let a,4, = a," x, a};_ |, and note that a,; € F as well.
Let b, 11 = p(a,,b,,a,11). Note that by the inductive hypothesis, a,, ~ b,,, which implies
that a1 ~ b,41 and hence b, 41 € E. Let hZI)1 be the bijection which takes a, 11 to b,41.

Note that h;b - hZJ{)l because a,, is a subtuple of a,, 1.

Inductive Case: n = 2k + 2 for some k > 0 (and not Trivial Case):

If z, € range(hg)b) then let h:;l = h,p, and let a,41 = a, and b, 11 = b,. Now suppose
zy & range(hy ). Let by, € E be the first (relative to the s-computable enumeration of
FE) tuple such that b,"z, € cl(b}; ;). Let b1 = b,z b}, ;, and note that b, € F as
well. Let a,4+1 = p(bn,a,,b,11). Note that by the inductive hypothesis, a,, ~ b,,, which

implies that a,,+; ~ b, 11 and hence a,+; € E. Let thl be the bijection which takes a,,+;
to by,41. Note that h;b - hgil because b, is a subtuple of b, ;1.

Let hap = Unew hg’b. Note that whenever a ~ b, then by induction we have a,, ~ b,, for all
n € w, and hence h, b is an automorphism of M. Further, h, p is s-computable uniformly
from (a, b) because p is s-computable and we can compute from EJ(M) whether or not each

n is in the Trivial Case. |
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» Theorem 5.19. Let s be a Turing degree. Suppose
(a) K is an s-computable age,
(b) EIK) <t s, and
(¢) K has (s-cHP), (s-cJEP), and (s-cCAP).

Then there is an s-computable cofinal Fraissé limit of K.

Proof. (Under a mild technical assumption, which we now describe.) Proposition 4.14 and
Corollary 4.15 transform a sequence of embeddings into an increasing sequence of structures
with respective elements isomorphic, such that the union of the sequence produces an infinite
computable structure. In this proof we use this technique to build a cofinal Fraissé limit. We
do so while requiring that for each an element B,, in the sequence, there is an appropriate
substructure A C B,, and an embedding from A into C that we can amalgamate the inclusion
map with the embedding. In order to do this we will need to enumerate all finite subsets of
each B, in our sequence. Because in general our amalgamations only give us embeddings and
not inclusion maps, there is a non-trivial amount of bookkeeping needed. This bookkeeping,
though annoying, is not difficult. As such we will assume in this proof that when we have an
amalgamation diagram one element of the diagram is an inclusion and not just an embedding.

As K satisfies (s-cCAP), there is an s-computable witness to (CAP). Let (AB, fa) be
one such.

We will now construct an increasing sequence of elements of K, (b, By, ln)necw € K
where for n € w, B, C B,4+1. We also let B, ; be the result of applying at most k functions
to elements in b,,. Note that B,, = ., Bn.x-

Without loss of generality we can assume that each B,, has as its domain a subset of w.
We also let (d,,, Fr, Gr)new be an enumeration, with infinite repetitions, of triples where

d,, is a finite subset of w,

F, € AB, and

G, is an embedding with dom(G,) = codom(F,). Let dom(G,) = I(j,) where
In € W.

Note that we can find a sequence which is s-computable. We will now build our sequence
in stages.

Stage 0:

Because K satisfies (JEP) there is a unique element (up to isomorphism) generated by the
empty tuple. Let ¢ be the empty tuple, and let (c,C,i) € K be an element that ¢ generates.
Let Fy be such that Fy € ABg and dom(Fp) = (c,C,i). We know one such exists because
ABgk is a distinguished collection of embeddings. Let By be the structure in the codomain of
Fo.

Stage n + 1:
Case a: Either

d, ¢ Uie[nJrl] Bin, or

dy, € Ujepngr) Bion but dy % 1(jn) where I(jn).
We let (bn+1,Bn+1,€n+1) = (bn, Bn,fn)

Case b: Otherwise.

Let D,, = cl(d,,]) and tai(dy,, A;j,): D, — Aj, is an isomorphism. Let K,, = G ota(dy, A;,).
Let I,, be the inclusion map from D, into B,,. We then have (I, K,) is a span. Let
(Ho, H1) = faBy, x,- Then (Hg, HT') is an amalgamation diagram over (I, K,,). We then
let (byt1, Bnt1,fn+1) = codom(HY).
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Note that we are assuming (as discussed at the beginning of the proof) that Hj is an
inclusion map and hence B,, C 5,,41.

We now let By, = U,,c,,
and compute fag, B, is s-computable. It therefore suffices to prove the following two claims.

B,,. Note that because we can determine from s which case we are in

> Claim C.1. K[B,] is s-computably isomorphic to K.

Proof. As K satisfies (s-cHP) we K[B,] is an s-computable subset of K.

Now suppose Ik (i) € K. As K has the (s-cJEP) we can find, computably in s, embedding
My: (bg, Bo, £o) — Ix(k) and M;: Ik (i) — Ix(k) for some k € w. Suppose for each £ € w we
have J; is the inclusion map from (bg, Bo, o) to (bg, Be,4¢). Then there must be some n
such that (I, K,,) = (Jn, Mp). Therefore, as B, 11 is an amalgamation of (J,,, My) there is
an embedding of Ix(7) into B,1. Because K[B,,] has (s-cHP) this gives us an s-computable
map from K to K[B,].

Tt is straightforward to check that this map, along with the inclusion from K[B,] into K,
give us the desired s-computable isomorphism. <

> Claim C.2. B, is s-computably cofinally ultrahomogeneous.

Proof. Let E be the collection of tuples a € B, such that a = aga; where ag € cl(a;) for
some n € w we have a; ~ b,,. Note that F is s-computable as it is computable from (B, )ncw
and £J(K). Further it is immediate that F is a cofinal collection with respect to B,,.

By Proposition 5.16 it suffices to show that B, has the cofinal extension property with
respect to £. We now define an s-computable function p witnessing this fact. Suppose
(a,b,c) with a,b,c € B, a,c € E, a C cl[B,](c) and a ~ b. We now break into two cases.

Case l:a % c
We let p(a,c,d) = e be any tuple such that ac ~ de.

Case 2: a ~c.

Let ng be such that ¢ ~ b,,, and let n; be such that ¢ C b,,,. Let I, 4 be the inclusion map
from cl(a) into cl(d) and let J = I, 4 o tai(c,a). Because of how (B, )necw was defined there
must some n* > ny such that if I,,, ,,» is the inclusion map from B,,, into B, then there is an
amalgamation diagram (Ho, Hy) over (I, n*,J) where codom(Hy) = (bpxt1, Bpxy1, bnx11)-
But then H; is an isomorphism with domain cl(d) where H; o J(c) = c. Therefore if
e = Hy(d) with we have e ~ d and t.(d,e)(a) = c. Therefore we can let p(a,c,d) = e.
Note p is therefore s-computable as the construction of (B),)ney is and EJ(K) < s. <

This completes the proof of Theorem 5.19. <

» Theorem 5.21. Suppose M is a cofinally ultrahomogeneous structure. Then M is
EI(M)" -computably cofinally ultrahomogeneous.

Proof. Let E be the collection of tuples a such that cla(a) is an amalgamation base. Note
that E is £J(M)"-computable by Theorem 4.36 (b).

Let Ey be a cofinal collection such that M is cofinally ultrahomogeneous with respect to
Ey. By Proposition 5.12, for each a € Ey the substructure cly(a) is an amalgamation base.
Therefore Ey C E and hence F is a cofinal collection.
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By Proposition 5.13, any isomorphism of amalgamation bases can be extended to some
automorphism of M. Suppose Ay and A; are amalgamation bases that are isomorphic via a
map j and suppose Ay C By for some amalgamation base By. Then there is some By with
Aj C B; for which there is an isomorphism from By to B; that extends the isomorphism j.
Therefore there is some function p computable from F and EJ(M) which witnesses that M
has the €J(M)"-computable cofinal extension property.

We also know that M is computable from EJ(M) (and hence in particular is
€J(M)"-computable). Therefore by Proposition 5.16, M is €J(M)"-computably cofinally
ultrahomogeneous. <

D Proofs of Results from Section 6

» Theorem 6.1. There is a computable age K, which is the canonical computable age of
some structure in a finite relational language, such that K has (CAP) but if it has (s-cCAP)
for some Turing degree s, then 0" <t 5.

We begin with a detailed outline. As a first step in the proof, we computably divide
the infinite structure we are constructing into w-many disjoint pieces such that no relation
holds between elements of distinct pieces. This will then give us w-many distinct subages
of our canonical age such that our age has (CAP) if and only if each of the subages does.
Further, because everything is done computably, we can compute a witness for (CAP) in a
subage from a witness for (CAP) in the full age. This will allow us to reduce the problem to
(uniformly in e) constructing an age such that from any witness to (CAP) we can determine
whether or not {e}(0)].

We create a structure which can be divide into w-many disjoint pieces by starting with a
base language Lo = {C, E'}. We then let C be the edge relation of a directed graph consisting
of infinitely may cycles of every length. We then let ' be an equivalence relation such that
each equivalence class contains at most one element of each cycle. We will then mandate
that no relation holds of a tuple with elements of cycles of different lengths. We will also
mandate that no relation holds of a tuple with elements in different equivalence classes and
that all relations are preserved if we move each element of the tuple one step along the cycle.
In this way the structure is completely determined by the structure on one equivalence class
in each cycle.

We now need to build a structure such that from any witness to (cAP) for its age we
can determine whether or not {€}(0)J. In order to do this, we define a component structure
Winn for m,n € wU {w} such that m < n or m =n = w. Intuitively Wy, ,, has three parts.
First it has two elements (¢4, ¢—) which act as the root of the structure. Then connected
to ¢4+ we have a B-chain of length m and a Y-chain of length n. Finally connected to q_
we have a B-chain of length n and a Y-chain of length m. The key property of W, ,, is
that given a substructure A of W, ,, containing {g;,g_} but where the longest B-chain and
the longest Y-chain are both at most m, then it is possible to embed A into W, , in two
ways: one in which the g4 gets mapped to an element connected to a B-chain of length n,
and one in which g4 gets mapped to an element connected to a Y-chain of length n. As
these cannot be amalgamated in W, ,,, this implies that A is not an amalgamation base.
Hence if {¢4+,q_-} C A C W,,,, and A is an amalgamation base, then A must contain either
a B-chain or a Y-chain of length > m, where this chain is attached to either ¢ or ¢_.

With this component in hand, if {e}(0)1 we can let the eth component of the age simply
be W5 4 (plus infinitely many elements which do not interact with it) and if {e}(0) ] we can
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let the eth component of the age be Wsg 99 (plus infinitely many elements which do not
interact with it). Therefore if A is an amalgamation base over {q;,q_} then A contains
either an B-chain or Y-chain of length > 4 connected to one of gy or ¢_ if and only if
{e}(0) .

We now provide the full proof.

Proof. Let Ly = {C, E} where C, E are binary. Let M be the structure where
the underlying set is My C w,
(M, CMo) is a directed graph,
Mo = (V2)(3y) Cla, y) A (3712) C (2, 2),
M has infinitely many C-cycles of every finite length,
EMo is an equivalence relation on M,
if M &= E(a,b) AC(a,a*) AC(b,b*) then M | E(a*,b*), and
if Ag, Ay are both C-cycles of length n then there is an ag € Ag and an a; € Ay such
that E(ag,a;) holds.

Intuitively, My consists of infinitely many disjoint C-cycles of every finite length. Then,
for a fixed length k we have an equivalence relation such that there are precisely k classes
which contain an element of a k-cycle and each of these equivalence classes are compatible
with the cycle.

The following definitions will be important. Suppose A C M. We define the FE-closure
of A, denoted A to be the collection of elements E-equivalent to some element of A. Let
ta: A — A be the inclusion map.

For a € Mg let 7(a) =k if a is in a k-cycle. Let

m(A) ={a € A : aisin a k-cycle}.

For E-equivalence classes A, B let A < B if min A < min B (in the ordering on w). For
each k € w let X be the <-minimal F-equivalence class containing elements in a k-cycle.
Let 7. (A) = AN Xy, i.e., the set of X} corresponding to A.

Note that the sets X}, the map A — A, and the maps 74, 7 and 7, are all computable
(uniformly in k& where applicable).

If f: A— B is an embedding then we must have 7(f(a)) = 7(a) for all @ € A. Therefore
if f: A — B is any embedding then it can be uniquely extended to an embedding f: A — B.

Further if fy: mx(A) — B is an embedding (for k& € w) then there is a unique embedding
Hiew fi: A — B such that

(ILie., fi: A) rm(z): fr

for all k € w.
Suppose £ is a language disjoint from Lg. Let £* = Lo U L;. We say an L*-structure
M is compatible with M, if for all R € £; and M = R(aqg, . ..,ax—1), we have
ME /\igje[k] E(ai,a;) and
if M ’: /\le[k] C(ai, bz) then M ): R(bo, ey bkfl).

So M is compatible with M if
we can M break up into substructures, one for each FE-equivalence class, with no
relations holding between tuples across equivalence classes, and
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if two equivalence classes are on cycles of the same length then the corresponding
structures are the same on both the equivalence classes (and the cycles maps give rise
to an isomorphism between the structures).

In particular, if (NV;)ie, is a sequence of w-many countable L;-structures where the
underlying set of each N is X;, then there is a unique L*-structure [[,.._ N; which is
compatible with Mg such that

(Hiew 'A/’L) er: Nk

Suppose that K; is the age of N; for each i € w. Let K,, be the age of []
following are then immediate.

1EW

N;. The

1EW

If the structures (N;);c. are uniformly computable then [],. N is computable.

K; has (HP) and (JEP) for all i € w U {w}.

1EW

We will now prove two important claims which will allow us to reduce our task to the
construction to subages. First though we need some definitions.
Note that if (Ng)rew is uniformly computable then ], N is computable.

€W
> Claim D.1. Suppose K; has (CAP) for each i € w. Then K, has (CAP).

Proof. If fg: A — B and fo: A — C is such that for all k¥ € w there are embeddings

9Bk Tk(B) = mu(D) and go: me(B) — m(D) with gpr o fp [ 2= g9ck © fo I, @)

then gg: B — D and go: B — D with gg o fg = gc o fc when gp = erwgBJc and
gc = pew 90,k

In particular, this implies that if K; has (CAP) for all i € w, then K,, has (CAP) as well.

<

> Claim D.2. Suppose (AB, fap) is a witness to (CAP) for K. Then, uniformly in e € w
we can compute a witness to (CAP) for /C,.

Proof. Note that as £* is a relational language, every subset of an L*-structure is a
substructure. Further notice that from (AB, fap) we can find a a witness to (CAP) such
that whenever a and a* enumerate the same set (possibly with repetitions), a € AB if and
only if a* € AB. Hence it suffices to identify the structures .4 such that (a,.A4,7) € AB for
some a and i. Therefore we will abuse notation and say A € AB in this situation.
For B € AB let By, be the collection of elements b in b with 7(b) = k. Let A € ABg_ if
and only if A = B, for some B € AB.
Suppose (Fy, F) is a potential span in K, with dom(Fy) € AB. Further suppose B € AB
is such that B, = dom(Fp). Let (F, Fy') be the maps where
dom(Fp)* = dom(Fy)* = B,
for ¢ € {0,1}, codom(F;)* = codom(F;) U (B\ B.), and
for i € {0, 1}, F; rdom(Fi): F; and F; rB\BE: id.
It is clear that (Fy, FY) is a potential span in KCy,. Let fABFS'FT = (Gp,Gy). For i € {0,1}
let G = G [codom(F,)- We then have range(G; ) C 7. (range(G;) for i € {0,1}. Therefore
(Gy,GY) is an amalgamation diagram over (Fy, Fy). Hence we can let ABg, (Fp, F1) =
(Gg,GY). <

Note that it is not the case that if K; has (AP) for all ¢ € w, then K, has (AP). This is
because the age of M does not have (AP).
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By Claims D.1 and D.2, it therefore suffices to construct a sequence of ages (K.)cc. each
with (CAP) such that whenever (ABg,, fas,, ) is a witness to (CAP) we can (uniformly in e
and the witness) determine whether or not {e}(n)].

Let £1 = {B,Y} where both are binary relations. Let W, ,, be the structure where

the underlying set consists of elements {7;}icw U {b] }icm U {b; }icn U {y] }icn U

{vi ticm U{as,a-};

B(a, c) holds if either

o a=qqandc=0b5 for O {+,-}, or

o a="bJ and c € b for some i + 1 < kg where O € {+,~} and k; = m and
k_=mn;

Y (a, ¢) holds if either

o a=gqqandc=yf forOe {+,-}, or

o a=y and ¢ € y2, for some i + 1 < kg where O € {+,—} and k4 = n and
k_ =m; and

no other relations hold.

Note the {x;};c., are there simply to ensure the structure is infinite.
Now we define for i € w

N, = {Wso,go if {i}(0)],
Way  if {i}(0)1 .

Note that if mg < my and ng < ny then Wy, ny € Wiy, n, and so {N;}ie, are uniformly
computable. Therefore [ [, N is a computable structure.

Working in K; for some i € w, suppose that A € ABg, with {¢;,q-} € A. Let
B(A),Y(A) be the number of elements in A in a B-edge and a Y-edge respectively. Let
B(A) = max{|B(A)],]Y (4)]}.

Suppose {i}(0)]. To get a contradiction also suppose that k(A) < 14. Let Ay be the
structure which extends A by ensuring that the B-chain connected to ¢y has length has least
31 elements. Let A; be the structure which extends A by ensuring that the Y-chain connected
to g4 has at least 31 elements. Note both Ay, A1 € K; as there is no way to distinguish
q+,q— in N; and K; has (HP). However, it is impossible to amalgamate Ag, A1 over {qy,q_}.
Therefore any element of AB containing {¢y,¢—} must have at least 14 elements in B-edges
and at least 14 elements in Y-edges.

But, if {i}(0)1 then there are only 13 elements in B-edges and 13 elements in Y-edges.
Therefore, we can computably determine (uniformly in ¢) whether {i}(0) halts by looking
at an the first element of AB containing {q;,q-}. Therefore from any witnesses to the
(s-cCAP) we can compute 0'.

Finally, we need to show that K; has (CAP). But this follows from the fact that any
substructure of \V; containing the maximal W, ,, is an amalgamation base. <

» Theorem 6.3. There is an computable age K, which is the canonical computable age of
some structure, such that K has (CAP) but if it has (s-cCAP) for some Turing degree s, then
0" ST S.

Again we begin with a detailed outline. As with the proof of Theorem 6.1, we first divide
our structure into w-many non-interacting parts. However as our language is infinite this
can easily be done assuming we have w-many unary relations which partition our structure
and that no other relation holds of a tuple that has elements in distinct elements of this
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partition. Further there is no harm in assuming that our age contains the age constructed in
Theorem 6.3. In particular, we can assume that can compute EJ(K) from any witness to
cofinal amalgamation of our age.

In the construction, we choose a function f: w x w — {0,1} such that for any e € w,
{e}OI (0)4 if and only if &, = {n : f(e,n) = 0} is finite. With this function in hand we will
want to (uniformly in e) construct an age such that we can determine from a witness to
cofinal amalgamation for the age whether or not {n : f(e,n) = 0} is finite.

In order to do this we will need to define a given component structure W, for o € 2<%,
This component will consist of a structure whose reduct to the appropriate sublanguage is
W, |,14/@.|, but which will be in a language that also has w-many unary relation symbols
{Ui}icw- We will then use o to determine whether or not U; holds for each 4. Specifically, if
k & ®, then —U;(x) will always hold. However, if k € ®, and £ = [{i < k : i € D.}| then
whether or not U;(x) holds will be determined by the value of o(¥).

The effect of this is that if len(g) > 1 + |®.| then W,r¢ and W1 are isomorphic. But if
®, is infinite then W,ro and W,n1 are never isomorphic. Because we can compute EJ(K)
from any witness to cofinal amalgamation, this reduces the problem of determining whether
®, is infinite to the problem of finding a g. such that whenever ®. is finite, g. > 1 4 |®|.
But if ®, is finite and A C W, is an amalgamation base containing {¢4,¢_} then A must
contain either a B-chain or a Y-chain, which must be of length 1+ |®.|. So when &, is finite,
we can determine from any such amalgamation base the value |®.]|.

We now provide the full proof.

Proof. Let (u;)icw be a non-decreasing computable enumeration of finite sets such that
Uicwwi = {e € w @ {e}(0) |}. Let f:w X w — w be the computable function where
to compute f(e,n) we run the following algorithm and return the nth output. Call this
“Program f”.

Stage 0:
Create a variable which takes values in w and which we think of as “maximal oracle call”
made. We denote this variable by oc. We set oc to 0.

Stage n + 1: We break the stage into three cases.

Case 1: Upt1 [oe= Un [oc and the Turing machine simulating {e}*~(0) has halted after n
steps.

In this case output 1, i.e., f(e,n) = 1.

Case 2: Upi1 [oc= Un [oc and {e}"n+1(0) has not halted after n steps.
Run {e}*»+1(0) for the (n + 1)st step. If an oracle call larger than oc was made, then update
the value of oc to be the index of this oracle call. Output 0, i.e., f(e,n) = 0.

Case 3: Un+1 roc7’é Unp, roc-
Run {e}“n+1(0) for n + 1 steps and set oc to be the largest oracle call made. Output 0, i.e.,

fle,n) = 0.

> Claim D.3. For any e € w the following are equivalent
(a) {n : f(e,n) =0} is finite,
(b) {e}(0)!
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Proof. Suppose (b) holds, i.e., {¢}° (0)|. Then the program only makes a finite number of
oracle calls. Let ¢ be the largest such oracle call. Let k be such that

¢ <k, i.e., every oracle call in the computation {e}ol (0) is less than k, and

for all k* > k, we have ug- N [(] = ug N [€].
Note we can always find such a k as the U;’s are non-decreasing. But then for all £* > k we
have f(e,k*) =1 and so (a) holds.

Now suppose (b) does not hold, i.e., {¢}°(0)1. Then either {}° (0) makes arbitrarily
large oracle calls, or there is a bound on the size of the oracle calls and the program runs
forever. In the former situation, Case 3 occurs infinitely often, and in the latter situation,
Case 2 occurs infinitely often. In either situation, {n : f(e,n) = 0} is infinite. <

We will construct a computable age K with (CAP) but where, for any witness to (CAP),
we can compute whether or not {n : f(e,n) = 0} is finite for each e. By Claim D.3 this will
suffice to prove our result. For convenience we will let &, = {n : f(e,n) = 0}.

Let L7 = {P,;}ic. be a computable language consisting of only unary relations. Let A/~
be a computable £ -structure such that {P/N" },c, is a partition of N~ and each PV is
infinite.

Suppose

(Li)icw is a uniformly computable sequence of disjoint relational languages each
disjoint from £,
L= UiEw L, UL,
N; is an L;-structure with underlying set PV~ for i € w, and
N, is the L-structure where
o Nylg-=N7,
o if N, & R(ag,...,an_1) where R is an atomic formula in L, then N, E
Niepn) Pr(ai), and
© (Nw rpin) fci: M
For each 7 € w U/{w}, let K; be the canonical computable age of ;.
The following are then immediate.
(a) K, has (HP) for all ¢ € w U {w}.
(b) K; has (JEP) for all i € w U {w}.
(¢) IfK; has (CAP) for all i € w, then K, has (CAP).
(@)

=

From any s-computable witness for (CAP) in I, we can compute an s-computable
witness for (CAP) in KC,, for all n € w, uniformly in n.

It therefore suffices to define, uniformly in n, a computable structure N, such that K,
has (CAP) and such that we can determine uniformly in n whether or not {n : f(e,n) =0}
is infinite from a witness to (CAP) in K,.

We now define K, uniformly in e. Let £, = {B®,Y* R} U{Q°} U {Uf}ic, where
B¢, Y* R are binary relation symbols, ()¢ is a unary relation symbol and U{ is a unary
relation symbol for each ¢ € w. In what follows, for ease of reading, we will omit the
superscripts as they will always be e.

Let me = |®,] if @, is finite and w otherwise. For each o € 2<¥ we define the structure
W, as follows.

The underlying set is
{6 Yicrem. UL icm, ULy Yicm, ULy " Yicim, U{dS, a2}

Q(a,b) holds if and only if {a,b} = {q7,q }. We call ¢7,q? the roots of W,.
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B(a,c) holds if either

o a=qf andCZbE’a for O € {+,-}, or

o a= biD‘U and ¢ = biE_L’T for some i + 1 < kg where O € {+,—} and ky = 1+ m,
and k- = me..

Y (a, c) holds if either

o a=qf andc:yom’a for O € {+,—}, or

o a= yiD"’ and ¢ € yi‘lf for some i < kg where O € {+,—} and ky = m, and
ko =1+ me.

For i € w, if f(e,i) =1 then W, |= (Vz) =U;(x).

For i € w, if f(e,i) =0and k= |{j <i : j € D.}| then

o if k <len(o) and o(k) =1 and = & {q+,q-}, then W, = U;(x), and

o otherwise, W, = —-U;(x).

We let NV, be the disjoint amalgamation of the structures {W, : o € {0,1}<“}. Note
that the structures W, are uniformly c.e. in o and so N, is computable.

One can think of the {B,Y }-structure of W, as consisting of two roots ¢7,¢? and
attached to each root is a B-chain and a Y-chain, where the B-chain attached to g9 is longer
than the Y-chain and the reverse is true of the chains attached to root ¢. On top of the
{B,Y} structure we also add a {U, };c. structure where each such unary relation either holds
or doesn’t hold of all non-root elements.

In order to determine whether or not U; holds we look at the function f(e,i). On the ¢
for which f(e,i) = 1, the relation U; does not hold for any o. However, if f(e,i) = 0 then
we look at the number of j less than i such that f(e,j) = 0, and we use o applied to that
number to determine whether or not U; holds.

For og,01 € 2<%, let t4y,0,: Wy, — Wy, be the map such that for z°° € W, we have
Log.or (77°) = 271 (where z is either g4 or q_, or is b}, b;, yi", or y;~ for some ).

The effect of this is that if @, is finite, and if len(o) > 1 + max ®., then the map tonpon1
from W,ng to WAy is an isomorphism.

But, if @ is infinite, then for every o € 2<% and every V C W, with V € {inO, quO}
the map tonp,0n1 [v from V to ton,0014[V] € Wyn is not an embedding. This is because
whenever

{5 <i: fle,j) = 0} =len(o)
and f(e,i) = 0 then

Wono E (V&) —~Us(z)
and

Wont = (V) (z € {g7 1 a7 '}V Us(@)).

Therefore, if we can find an ¢ € w that guarantees either (i) ¢ is at least 1 + max ®, and
®, is finite, or (ii) ®. is infinite, then we can determine from EJ(K,) which of (i) or (ii) holds
and hence whether or not ®. is finite.

> Claim D.4. Suppose (AB, fap) is a witness to (CAP) for V. Then, uniformly in (AB, fap)
and e, we can find a number g, such that whenever @, is finite, g. = 1 + |®,|.
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Proof. Let ¢ be such that A; has two elements a,b and A; = Q(a,b). Uniformly in AB we
can find an F € AB with dom(F) = I(i). Let C be the underlying structure of codom(F).
Let o € 2<“ be such that range(F) C W,.

Let D = C\ Wy, i.e., the collection of elements in C not in W,. Let £ =CNW,.

Let Eg, {5 be the length of the B-chain in C connected to ¢7, g7 respectively. Let é;ﬁ, {3 be
the length of the Y-chain in C connected to ¢7, ¢7 respectively. Let g, = max{¢}, (5, 05, 0y }.
Note g, is then at most 1 + |®,|.

Now suppose ®, is finite. Then W, = W, provided that 7o [\, |+1= 71 [|o.|+1-

Suppose, towards a contradiction, that g. < 1+ |®.|. In this case there is a unique
embedding §: £ — W, with $(¢7) = ¢ and B(q7) = ¢7. Let v,71: C = CU W, with
Yo =1id ¢ and v = fUid [p. As F € AB there must be ng,n:: CU W, — G for some G
where 79 00 = 11 °071.

But the maximal B-chain attached to ¢ has length 1 + |®.| in W, and hence also in
CUW,. Therefore the maximal B-chain in G attached 79070(¢7) has length (at least) 1+ |®,|.
But the maximal Y-chain in G attached to 71(¢7) has length 1+ |®.| and so the maximal
Y-chain attached to 71 0y1(¢7) has length (at least) 14 |®.|. But as 19 ovo(qS) = n1 0 vq3)
this implies there is an element in G which is the start of both a B-chain and a Y-chain, each
of length (at least) 1 + |®,|, which contradicts how N, was constructed.

Therefore if @, is finite we must have g. = 1 + || <

We need one more ingredient to complete the result.

> Claim D.5. K, has (CAP).

Proof. Suppose I(i) € K.. We need to show that there is a map F with dom(F') = I(¢) and
codom(F') an amalgamation base. We break into two cases depending on whether or not
|®.| is finite.

Case 1: &, is finite.

Because 1(z) € K, and K, is the canonical computable age of N, there must be a finite
number of o, ..., or_1 such that A; C Uie[k] W,. Let B be this union and F' be the inclusion
map.

Suppose that «;: B — C;, for i € {0,1}, are embeddings with C; € K.. Then no
relations hold between any element of C; \ o;“[B] and any element of «;“[B]. Further, because
Wr, = W, whenever 7 [14|0,|= 71 [14]0,| We can find embeddings of C; \ a;“[B] into N
whose images are disjoint with each other and with the image of B.

Therefore, we can find an amalgamation of gy and ay, and so B is an amalgamation base.
As 1I(i) was arbitrary, this implies that K. has (CAP).

Case 2: @, is infinite.
Suppose C C N,. We say ¢ € C is closed in C if whenever ¢ is in a B-chain or Y-chain
connected to a root in NV, then c is in a B-chain or Y-chain connected to a root in C. We
say C is closed if
¢ is closed in C for every c € C, i.e., every non-root element is connected to a root,
every root is connected via some B-edge or Y-edge to a non-root, and
if g€ C and N, = Q(q,¢') then ¢’ € C, i.e., if we have a root we also have its pair.

If a € N is a non-root, then because ®, is infinite, we can read off from the {U;}icw-
structure of @ which W, it is in. Similarly, if C is closed we can read off from each root which
W, it came from. As such, if Cy,C; are closed there at most one embedding from Cy to C;.
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Further, every finite subset of A, is contained in a finite closed subset of N.

Suppose B is closed and each «;: B — C;, for i € {0,1}, is an embedding with C; € K,.
Let C;" be a closed finite subset of NV, containing C;. There is then a unique map o : B — C;".
Further, as there is a unique embedding from B into N, and a unique embedding from C;"
into NV, we can assume without loss of generality that ozl-+ is an inclusion. But then we can
let D C N, be any closed subset containing Cj” and C;. Then for each i € {0, 1}, there is a
unique map from C;” to D. Therefore D is an amalgamation of ag and a;.

In particular, this implies that B is an amalgamation base. Hence we can let codom(F)
be any element of K, whose underlying structure is B. Therefore K. has (CAP). <

Let A be the disjoint amalgamation of N, and the structure from Theorem 6.1. Let K
be the age of M. Then by Theorem 6.1 and Claim D.5, the age K has (CAP). Now suppose
K has (s-cCAP) for some Turing degree s. By Theorem 6.1 we can compute 0’ from s, and
so by Lemma 4.5 we can compute EJ(K) from s as well. But then by Claim D.4, uniformly
in e we can determine from s whether or not ®, is finite. Hence 0" <t s. <
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