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Abstract. We consider graph Turing machines, a model of parallel
computation on a graph, which provides a natural generalization of several
standard computational models, including ordinary Turing machines
and cellular automata. In this extended abstract, we give bounds on
the computational strength of functions that graph Turing machines
can compute. We also begin the study of the relationship between the
computational power of a graph Turing machine and structural properties
of its underlying graph.

1 Introduction

When studying large networks, it is important to understand what sorts of
computations can be performed in a distributed way on a given network. In
particular, it is natural to consider the setting where each node acts independently
in parallel, and where the network is specified separately from the computation
to be performed. In order to study networks whose size is considerably larger
than can be held in memory by the computational unit at any single node, it
is often useful to model the network as an infinite graph. (For a discussion of
modeling large networks via infinite graphs, see, e.g., [Lov09].)

We define a notion of graph Turing machine that is meant to capture this
setting. This notion generalizes several other well-known models of computation,
including ordinary Turing machines, cellular automata, and parallel graph dy-
namical systems. Each of these models, in turn, occurs straightforwardly as a
special case of a graph Turing machine, suggesting that graph Turing machines
capture a natural concept of parallel computation on graphs.

A graph Turing machine (henceforth abbreviated as “graph machine”) per-
forms computation on a vertex-labeled edge-colored directed multigraph satisfying
certain properties. This notion of computation is designed to capture the idea
that in each timestep, every vertex performs a limited amount of computation (in
parallel, independently of the other vertices), and can only distinguish vertices
connected to it when they are connected by different colors of edges.
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In this paper we study the functions that can be computed using graph
machines, which we call graph computable functions. As we will see, this parallel
notion of computation will yield significantly greater computational strength
than ordinary Turing machines. We will see that the computational strength
of graph machines is exactly that of 0(ω), the Turing degree of true arithmetic
(thereby providing another natural construction of this degree). We also begin
to examine the relationship between various properties of the underlying graph
(e.g., finiteness of degree) and the computational strength of the resulting graph
machines.

In this extended abstract, we state the main results and provide proofs or
proof sketches of several of these results. For detailed proofs and other related
results, see the full version at https://arxiv.org/abs/1703.09406.

1.1 Main results and overview of the paper

We begin by introducing the notions of colored graphs, graph machines, and
graph computability in Section 2.

Our main results fall into two classes: bounds on the computational power
of arbitrary computable graph machines, and bounds among machines with an
underlying graph every vertex of which has finite degree (in which case we say
the graph is of finite degree).

Theorem 3.6 states that every graph computable function is Turing reducible
to 0(ω). In the other direction, we show in Theorem 3.10 that this bound is
attained by a single graph Turing machine.

Sitting below 0(ω) are the arithmetical Turing degrees, i.e., those less than 0(n)

for some n ∈ N, where 0(n) denotes the n-fold iterate of the halting problem. We
show in Corollary 3.9 that every arithmetical Turing degree contains a function
that is graph Turing computable. (It remains open whether every degree below
0(ω) can be achieved.)

We next show in Corollary 4.9 that functions determined by graph machines
with underlying graph of finite degree are reducible to the halting problem, 0′.
Further, we show in Corollary 4.10 that if we restrict to graph machines where
every vertex has the same (finite) degree, then the resulting graph computable
function is computable by an ordinary Turing machine.

We also show in Theorem 4.11 that every Turing degree below 0′ is the degree
of some graph computable function with underlying graph of finite degree.

In Section 5, we examine how several other models of computation can be
viewed as special cases of graph machines, including ordinary Turing machines,
cellular automata, and parallel graph dynamical systems. Note that there have
been many other attempts (which we do not discuss at length here) to extend
Turing machines to operate on graphs, including [AAB+14], [Knu68, pp. 462–463],
[KU58], and [Sch80] — the first of which calls its different notion a “graph Turing
machine” as well.

https://arxiv.org/abs/1703.09406


1.2 Notation

If f : A→
∏

i≤nBi and k ≤ n ∈ N, then we let f[k] : A→ Bk be the composition
of f with the projection map onto the k’th coordinate.

Fix an enumeration of computable partial functions, and for e ∈ N, let {e}
be the e’th such function in this list. If X and Y are sets with 0 ∈ Y , let
Y <X = {η : X → Y : |{a : η(a) 6= 0}| < ω}, i.e., the collection of functions
from X to Y for which all but finitely many inputs yield 0. (Note that by this
notation we do not mean partial functions from X to Y supported on fewer than
|X|-many elements.) For a set X, let P(X) denote the collection of subsets of X
and let P<ω(X) denote the collection of finite subsets of X. Note that the map
which takes a subset of X to its characteristic function is a bijection between
P<ω(X) and {0, 1}<X .

When working with computable graphs, sometimes the underlying set of
the graph will be a finite coproduct of finite sets and Nk for k ∈ N. The
standard notion of computability for N transfers naturally to such settings,
making implicit use of the computable bijections between Nk and N, and between∐

i≤k N and N, for k ∈ N. We will sometimes say computable set to refer to some
computable subset (with respect to these bijections) of such a finite coproduct
X, and computable function to refer to a computable function having domain
and codomain of that form or of the form F<X for some finite set F .

For sets X,Y ⊆ N, we write X ≤T Y when X is Turing reducible to Y (and
similarly for functions and other computably presented countable objects). We
write X ≡T Y when X ≤T Y and Y ≤T X. For more details on results and
notation in computability theory, see [Soa87].

2 Graph computing

We now define graph Turing machines and graph computable functions. Note
that these definitions differ from those in the full version of this paper, as here we
require the sets of labels and colors to be finite. This simplifies the presentation,
while losing little generality (since all of our constructions produce graphs with
this property).

Definition 2.1. A colored graph is a tuple G of the form (G, (L, V ), (C,E))
where

• G is a set, called the underlying set or the set of vertices,

• L is a finite set, called the set of labels, and V : G → L is called the
labeling function, and

• C is a finite set, called the set of colors, and E : G×G→ P(C) is called
the edge coloring.

A computable colored graph is a colored graph such that G is a computable
set and V and E are computable functions.



The intuition is that a colored graph is an edge-colored directed multigraph
where each vertex is assigned a label, and such that among the edges from one
vertex to another, there is at most one of each color. Eventually, we will allow
each vertex to do some fixed finite amount of computation, and we will want
vertices with the same label to perform the same computations.

For the rest of the paper by a graph we will always mean a colored graph,
and will generally write the symbol G to refer to graphs.

Let G be a graph with underlying set G, and suppose A ⊆ G. Define G|A
to be the graph with underlying set A having the same set of labels and set of
colors as G, such that the labeling function and edge coloring function of G|A are
the respective restrictions to A.

Definition 2.2. A graph Turing machine, or simply graph machine, is a
tuple M = (G, (A, {0, 1}), (S, s), T ) where the following hold.

• G = (G, (L, V ), (C,E)) is a graph, called the underlying graph. We will
speak of the components of the underlying graph as if they were components
of the graph machine itself. For example, we will call G the underlying set of
M as well as of G.

• A is a finite set, called the alphabet, having distinguished symbols 0 and 1.
• S is a finite set, called the collection of states.
• s is a distinguished state, called the initial state.
• T : L × P(C) × A × S → P(C) × A × S is a function, called the lookup

table, such that T (`, ∅, 0, s) = (∅, 0, s) for all ` ∈ L, i.e., if any vertex is in
the initial state, currently displays 0, and has received no pulses, then that
vertex doesn’t do anything in the next step. This lookup table can be thought
of as specifying a transition function.

A G-Turing machine (or simply a G-machine) is a graph machine with
underlying graph G. A computable graph machine is a graph machine whose
underlying graph is computable.

If A is a subset of the underlying set of M, then M|A is the graph machine
with underlying graph G|A having the same alphabet, states, and lookup table
as M.

The intuition is that a graph machine should consist of a graph where at each
timestep, every vertex is assigned a state and an element of the alphabet, which
it displays. To figure out how these assignments are updated over time, we apply
the transition function determined by the lookup table which tells us, given the
label of a vertex, its current state, and its currently displayed symbol, along with
the colored pulses the vertex has most recently received, what state to set the
vertex to, what symbol to display next, and what colored pulses to send to its
neighbors.

For the rest of the paper, M = (G, (A, {0, 1}), (S, s), T ) will denote a com-
putable graph machine whose underlying (computable) graph is G = (G, (L, V ),
(C,E)).



Definition 2.3. A configuration of M is a function f : G → P(C) × A × S.
A configuration f is a bounded configuration when |{v ∈ G : f[2](v) 6= 0}|
is finite. A bounded configuration f is a starting configuration when further
f[1](v) = ∅ and f[3](v) = s for all v ∈ G.

In other words, a starting configuration is an assignment in which all vertices
are in the initial state s, no pulses have been sent, and only finitely many vertices
display a non-zero symbol.

Note that if A is a subset of the underlying set of M and f is a starting
configuration for M, then f |A is a starting configuration for M|A.

Definition 2.4. Given a configuration f for M, the run of M on f is the
function 〈M, f〉 : G× N→ P(C)× A× S satisfying, for all v ∈ G,

• 〈M, f〉(v, 0) = f(v) and
• 〈M, f〉(v, n+ 1) = T (V (v), X, z, t) for all n ∈ N, where
◦ X =

⋃
w∈G

(
E(w, v) ∩ 〈M, f〉[1](w, n)

)
,

◦ z = 〈M, f〉[2](v, n), and
◦ t = 〈M, f〉[3](v, n).

We say that a run halts at stage n if 〈M, f〉(v, n) = 〈M, f〉(v, n + 1) for
all v ∈ G.

A run of a graph machine is the function which takes a configuration for the
graph machine and a natural number n, and returns the result of letting the
graph machine process the configuration for n-many timesteps.

The following lemma is immediate from Definition 2.4.

Lemma 2.5. Suppose f is a configuration for M, and for each n ∈ N, define
fn := 〈M, f〉( · , n). Then for all n,m ∈ N and v ∈ G, the function fn is a
configuration for M such that fn+m(v) = 〈M, fn〉(v,m) = 〈M, f〉(v, n+m). ut

We now describe how a graph machine defines a function.

Definition 2.6. For x ∈ A<G, let x̂ be the configuration such that x̂(v) =
(∅, x(v), s) for all v ∈ G. Let {M} : A<G → AG be the partial function such that

• {M}(x)↑, i.e., is undefined, if the run 〈M, x̂〉 does not halt, and
• {M}(x) = y if 〈T, x̂〉 halts at stage n and y(v) = 〈M, x̂〉[2](v, n) for all v ∈ G.

Note that {M}(x) is well defined as x̂ is always a starting configuration for M.
The graph machine M is total bounded if {M}(x̂) ∈ A<G for all x ∈ A<G;

in particular, the partial function {M} is total. When M is total bounded, we
will sometimes write {M} : A<G → A<G.

While in general, the output of {M}(x) might have infinitely many non-zero
elements, for purposes of considering which Turing degrees are graph computable,
we will mainly be interested in the case of total bounded machines.

When defining a function using a graph machine, it will often be convenient to
have extra vertices whose labels don’t affect the function being defined, but whose
presence allows for a simpler definition. These extra vertices can be thought as
“scratch paper” and play the role of extra tapes (beyond the main input/output
tape) in a multi-tape Turing machine. We now make this precise.



Definition 2.7. Let X be an infinite computable subset of G. A map ζ : A<X →
AX is 〈G, X〉-computable via M if

(a) {M} is total,
(b) for x, y ∈ A<G, if x|X = y|X then {M}(x) = {M}(y), and
(c) for all x ∈ A<G, for all v ∈ G \ X, we have {M}(x)(v) = 0, i.e., when
{M}(x) halts, v displays 0, and

(d) for all x ∈ A<G, we have {M}(x)|X = ζ(x|X).

A function is G-computable via M if it is 〈G, X〉-computable via M for some
infinite computable X ⊆ G. A function is G-computable if it is G-computable
via M◦ for some computable G-machine M◦. A function is graph Turing
computable, or simply graph computable, when it is G◦-computable for
some computable graph G◦.

The following easy lemma captures the sense in which functions that are
〈G, X〉-computable via M are determined by their restrictions to X.

Lemma 2.8. Let X be an infinite computable subset of G. There is at most one
function ζ : A<X → AX that is 〈G, X〉-computable via M, and it must be Turing
equivalent to {M}. ut

3 Arbitrary graphs

In this section, we consider the possible Turing degrees of total graph computable
functions. We begin with a bound for finite graphs.

Lemma 3.1. Suppose G is finite. Let h be the map which takes a configuration
f for M and returns n ∈ N if 〈M, f〉 halts at stage n (and not earlier), and
returns ∞ if 〈M, f〉 doesn’t halt. Then 〈M, f〉 is computable and h is computable.

Proof. Because G is finite, 〈M, f〉 is computable. Further, there are are only
finitely many configurations of M. Hence there must be some n, k ∈ N such that for
all vertices v in the underlying set of M, we have 〈M, f〉(v, n) = 〈M, f〉(v, n+ k),
and the set of such pairs (n, k) is computable. Note that 〈M, f〉 halts if and only
if there is some n, less than or equal to the number of configurations for M,
for which this holds for (n, 1). Hence h, which searches for the least such n, is
computable. ut

We next investigate which Turing degrees are achieved by arbitrary com-
putable graph machines.

3.1 Upper bound

We now show that every graph computable function is computable from 0(ω).

Definition 3.2. Let f be a configuration for M, and let A be a finite subset of
G. We say that (Bi)i≤n is an n-approximation of M and f on A if



• A = B0,
• Bi ⊆ Bi+1 ⊆ G for all i < n, and
• if Bi+1 ⊆ B ⊆ G then 〈M|Bi+1 , fi|Bi+1〉(v, 1) = 〈M|B , fi|B〉(v, 1) for all
v ∈ Bi+1, where again fi := 〈M, f〉( · , i).

The following proposition (in the case where ` = n−n′) states that if (Bi)i≤n
is an n-approximation of M and f on A, then as long as we are only running
M with starting configuration f for `-many steps, and are only considering the
states of elements within Bn′ , then it suffices to restrict M to Bn. It follows by a
straightforward though technical induction.

Proposition 3.3. The following claim holds for every n ∈ N: For every config-
uration f for M, and finite A ⊆ G,

• there is an n-approximation of M and f on A, and
• if (Bi)i≤n is such an approximation, then

(∀n′ < n)(∀` ≤ n− n′)(∀v ∈ Bn′)〈M|Bn′+`
, f |Bn′+`

〉(v, `) = 〈M, f〉(v, `). ut

We now analyze the computability of approximations and of runs.

Proposition 3.4. Let n ∈ N. For all computable graph machines M and config-
urations f for M, the following are f (n)-computable, uniformly in n, where f is
the Turing degree of f .

• The collection Pn(f) := {(A, (Bi)i≤n) : A ⊆ G is finite and (Bi)i≤n is an
n-approximation of M and f on A}.

• The function fn := 〈M, f〉( · , n). ut

Corollary 3.5. If f is a configuration for M, then fn is f (n)-computable and
so 〈M, f〉 is f (ω)-computable, where f is the Turing degree of f .

Proof. By Proposition 3.3, for each v ∈ G (the underlying set of M) and each
n ∈ N, there is an approximation of M for f and {v} up to n. Further, by
Proposition 3.4 we can f (n)-compute such an approximation, uniformly in v
and n. But if (Bv

i )i≤n is an approximation of M for f and {v} up to n then
〈M|Bv

n
, f |Bv

n
〉(v, n) = 〈M, f〉(v, n). So fn = 〈M, f〉( · , n) is f (n)-computable,

uniformly in n. Hence 〈M, f〉 is f (ω)-computable. ut

Theorem 3.6. Suppose that {M} is a total function. Then {M} is computable
from 0(ω).

Proof. Let f be any starting configuration of M. Then f is computable. Hence
by Corollary 3.5, 〈M, f〉(v, n+ 1) is 0(n+1)-computable. This then implies that
the function determining whether or not {M}(x) halts after n steps is 0(n+2)-
computable.

But by assumption, {M}(x) halts for every x ∈ A<G, and so {M} is 0(ω)-
computable. ut



3.2 Lower bound

We have seen that every graph computable function is computable from 0(ω). In
this subsection, we will see that this bound can be obtained. We begin by showing
that every arithmetical Turing degree has an element that is graph computable.
From this we then deduce that there is a graph computable function Turing
equivalent to 0(ω).

We first recall the following standard result from computability theory (see
[Soa87, III.3.3]).

Lemma 3.7. Suppose n ∈ N and X ⊆ N. Then the following are equivalent.

• X ≤T 0(n).
• There is a computable function g : Nn+1 → N such that
◦ h( · ) := limx0→∞ · · · limxn−1→∞ g(x0, . . . , xn−1, · ) is total.
◦ h ≡T X. ut

We now sketch the following construction.

Proposition 3.8. Let n ∈ N and suppose g : Nn+1 → N is computable such that

h( · ) := lim
x0→∞

· · · lim
xn−1→∞

g(x0, . . . , xn−1, · )

is total. Then h is graph computable via a graph machine whose lookup table does
not depend on n or g.

Proof sketch. We define a “subroutine” graph machine that, on its own, computes
the limit of a computable binary sequence. We then embed n repetitions of this
subroutine into a single graph machine that computes the n-fold limit of the
(n+ 1)-dimensional array given by g.

The subroutine graph machine has a countably infinite sequence (with one
special vertex) as its underlying graph, in that every vertex is connected to
all previous vertices (and all are connected to the special vertex). Each vertex
first activates itself, setting its displayed symbol to the appropriate term in the
sequence whose limit is being computed. Each vertex sends a pulse to every
previous vertex, signaling its displayed state. Any vertex which receives both 0
and 1 from vertices later in the sequence knows that the sequence alternates at
some later index. Finally, any vertex which only receives a 0 or 1 pulse, but not
both, sends a pulse corresponding to the one it receives to the special vertex.
This special vertex then knows the limiting value of the sequence. ut

This technical construction allows us to conclude the following.

Corollary 3.9. Suppose X ⊆ N is such that X ≤T 0(n) for some n ∈ N. Then
X is Turing-equivalent to some graph computable function.

Proof. By Lemma 3.7, X is Turing equivalent to the n-fold limit of some com-
putable function. By Proposition 3.8, this n-fold limit is graph computable. ut



Not only are all graph computable functions Turing reducible to 0(ω), but
this bound can be achieved.

Theorem 3.10. There is a graph computable function that is Turing equivalent
to 0(ω). ut

4 Finite degree graphs

We have seen that every arithmetical function is graph computable. However, as
we will see in this section, if we instead limit ourselves to graphs where each vertex
has finite degree, then not only is every graph computable function computable
from 0′, but also we can obtain more fine-grained control over the Turing degree
of the function by studying the degree structure of the graph.

4.1 Upper bound

Before we move to the specific case of graphs of finite degree (defined below),
there is an important general result concerning bounds on graph computability
and approximations to computations.

Definition 4.1. Let Θ : P<ω(G) → P<ω(G). We say that Θ is a uniform
approximation of M if for all finite subsets A ⊆ G, we have A ⊆ Θ(A), and
for any configuration f for M, the pair (A,Θ(A)) is a 1-approximation of M
and f on A.

The following is an easy induction on n.

Lemma 4.2. Let Θ(A) be a uniform approximation of M. Then for any fi-
nite subset A of G, any configuration f for M, and any n ∈ N, the tuple
(A,Θ(A), Θ2(A), . . . , Θn(A)) is an n-approximation of M and f on A. ut

Note that while we will be able to get even better bounds in the case of
finite degree graphs, we do have the following bound on computability, as a
straightforward consequence of Lemma 4.2.

Lemma 4.3. Let Θ be a uniform approximation of M. Then for any configura-
tion f , the function 〈M, f〉 is computable from Θ and f (uniformly in f), and if
{M} is total, then {M} ≤T Θ

′. ut

We now introduce the degree function of a graph.

Definition 4.4. For v ∈ G, define the degree of v to be the number of ver-
tices incident with it, i.e., degG(v) := |{w : E(v, w) ∪ E(w, v) 6= ∅}|, and call
degG( · ) : G→ N ∪ {∞} the degree function of G.

We say that G has finite degree when rng(degG) ⊆ N, and say that G has
constant degree when degG is constant.



We will see that for a graph G of finite degree, its degree function bounds the
computability of G-computable functions.

The following easy lemma (using the fact that each vertex of a computable
graph has a computably enumerable set of neighbors) allows us to provide a
computation bound on graph Turing machines all vertices of whose underlying
graph have finite degree.

Lemma 4.5. Suppose that G has finite degree. Then degG ≤T 0′. ut
We next need the following definition.

Definition 4.6. For each A ⊆ G and n ∈ N, the n-neighborhood of A, written
Nn(A), is defined by induction as follows.
Case 1: The 1-neighborhood of A is N1(A) := A ∪ {v ∈ G : (∃a ∈ A) E(v, a) ∪
E(a, v) 6= ∅}.
Case k + 1: The k + 1-neighborhood of A is Nk+1(A) = N1(Nk(A)).

Lemma 4.7. Suppose that G has finite degree. Then

(a) the 1-neighborhood map N1 is computable from degG, and
(b) for any G-machine M, the map N1 is a uniform approximation to M.

Proof. Clause (a) follows from the fact that given the degree of a vertex one can
search for all of its neighbors, as this set is computably enumerable (uniformly in
the vertex) and of a known finite size.

Clause (b) follows from the fact that if a vertex receives a pulse, it must have
come from some element of its 1-neighborhood. ut

The following more precise upper bound on the computability of a graph
computable function holds when the underlying graph has finite degree.

Theorem 4.8. Suppose that G has finite degree and {M} is total. Then M is
bounded and {M} is computable from degG. ut

The following important corollaries are immediate from Lemma 4.5, Theo-
rem 4.8, and the fact that if degG is constant, it is computable.

Corollary 4.9. Suppose that G has finite degree. Then any G-computable func-
tion is 0′-computable. ut

Corollary 4.10. Suppose that G has constant degree. Then any G-computable
function is computable (in the ordinary sense). ut

4.2 Lower bound

Finally we consider the possible Turing degrees of graph computable functions
where the underlying graph has finite degree. In particular, we show that every
Turing degree below 0′ is the degree of some total graph computable function
where the underlying graph has finite degree.

Recall from Lemma 3.7 (for n = 1) that a set X ⊆ N satisfies X ≤T 0′

when the characteristic function of X is the limit of a 2-parameter computable
function.



Theorem 4.11. For every X : N → {0, 1} such that X ≤T 0′ there is a graph
machine NX such that every vertex of its underlying graph has degree at most 3,
and {NX} is total and Turing equivalent to X. ut

5 Representations of other computational models via
graph machines

Many other models of computation can be viewed as special cases of graph
machines, providing further evidence for graph machines being a universal model
of computation on graphs.

5.1 Ordinary Turing machines

An ordinary Turing machine can be simulated by a graph Turing machine, where
the tape of the Turing machine is encoded by an underlying graph that is a
Z-chain.

The doubly-infinite one-dimensional read/write tape of an ordinary Turing
machine has cells indexed by Z, the free group on one generator, and in each
timestep the head moves according to the generator or its inverse. This interpreta-
tion of a Turing machine as a Z-machine has been generalized to H-machines for
arbitrary finitely generated groups H by [ABS17], and the simulation mentioned
above extends straightforwardly to this setting as well.

One might next consider how cleanly one might embed various extensions
of Turing machines where the tape is replaced by a graph, such as Kolmogorov–
Uspensky machines [KU58], Knuth’s pointer machines [Knu68, pp. 462–463], and
Schönhage’s storage modification machines [Sch80]. For a further discussion of
these and their relation to sequential abstract state machines, see [Gur93] and
[Gur00].

5.2 Cellular automata

Cellular automata (which we take to be finite-dimensional, finite-radius and with
finitely-many states) can be naturally simulated by graph machines, moreover
of constant degree. In particular, Corollary 4.10 applies to this embedding. For
background on cellular automata, see, e.g., the book [TM87].

Cells of the automata are taken to be the vertices of the graph, and cells are
connected to its “neighbors” (other cells within the given radius) by a collection
of edges (of the graph) whose labels encode their relative position (e.g., “1 to
the left of”) and all possible cellular automaton states. (In particular, every
vertex has the same finite degree.) The displayed symbol of each vertex encodes
the cellular automaton state of that cell. The rule of the cellular automaton is
encoded in the lookup table so as to provide a bisimulation between the original
cellular automaton and the graph machine built based on it.

Not only is the evolution of every such cellular automata computable (moreover
via this embedding as a graph machine), but there are particular automata whose



evolution encodes the behavior of a universal Turing machine [Coo04], [WN09].
Several researchers have also considered the possibility of expressing intermediate
Turing degrees via this evolution; see [Bal04], [Coh02], and [Sut03]. Analogously,
one might ask which Turing degrees can be expressed in the evolution of graph
machines.

5.3 Parallel graph dynamical systems

Parallel graph dynamical systems [AMV15b] can be viewed as essentially equiv-
alent to the finite case of graph Turing machines, as we now describe. Finite
cellular automata can also be viewed as a special case of parallel graph dynamical
systems, as can finite boolean networks, as noted in [AMV15b, §2.2]. For more
on parallel graph dynamical systems, see [AMV15a], [AMV15b], and [BCZ04].

In contrast, it is not immediately clear how best to encode an arbitrary
(parallel) abstract state machine [BG03] as a graph Turing machine (due to the
higher arity relations of the ASM).
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